Multimegawatt wind-turbine systems, often organized in a wind park, are the backbone of the power generation based on renewable-energy systems. This paper reviews the most-adopted wind-turbine systems, the adopted generators, the topologies of the converters, the generator control and grid connection issues, as well as their arrangement in wind parks.
Representations of AC power systems by frequency dependent impedance equivalents is an emerging technique in the dynamic analysis of power systems including power electronic converters. The technique has been applied for decades in DC-power systems, and it was recently adopted to map the impedances in AC systems. Most of the work on AC systems can be categorized in two approaches. One is the analysis of the system in the dq-domain, whereas the other applies harmonic linearization in the phase domain through symmetric components. Impedance models based on analytical calculations, numerical simulation and experimental studies have been previously developed and verified in both domains independently. The authors of previous studies discuss the advantages and disadvantages of each domain separately, but neither a rigorous comparison nor an attempt to bridge them has been conducted. The present paper attempts to close this gap by deriving the mathematical formulation that shows the equivalence between the dq-domain and the sequence domain impedances. A modified form of the sequence domain impedance matrix is proposed, and with this definition the stability estimates obtained with the Generalized Nyquist Criterion (GNC) become equivalent in both domains. The second contribution of the paper is the definition of a Mirror Frequency Decoupled (MFD) system. The analysis of MFD systems is less complex than that of non-MFD systems because the positive and negative sequences are decoupled. This paper shows that if a system is incorrectly assumed to be MFD, this will lead to an erroneous or ambiguous estimation of the equivalent impedance.
The small-signal impedance modeling of modular multilevel converter (MMC) is the key for analyzing resonance and stability of MMC-based power electronic systems. MMC is a power converter with a multi-frequency response due to its significant steady-state harmonic components in the arm currents and capacitor voltages. These internal harmonic dynamics may have great influence on the terminal characteristics of the MMC, which, therefore, are essential to be considered in the MMC impedance modeling. In this paper, the harmonic state-space (HSS) modeling approach is first introduced to characterize the multi-harmonic coupling behavior of the MMC. On this basis, the small-signal impedance models of the MMC are then developed based on the proposed HSS model of the MMC, which are able to include all the internal harmonics within MMC, leading to accurate impedance models. Besides, different control schemes for the MMC, such as open-loop control, ac voltage closed-loop control, and circulating current closed-loop control, have also been considered during the modeling process, which further reveal the impact of the MMC internal dynamics and control dynamics on the MMC impedance. Furthermore, an impedance-based stability analysis of the MMC-HVDC connected wind farm has been carried out to show how the HSS based MMC impedance model can be used in practical system analysis. Finally, the proposed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.