Rac GTPases are members of the Rho family regulating the actin cytoskeleton and implicated in neuronal development. Ubiquitous Rac1 and neuron-specific Rac3 GTPases are coexpressed in the developing mammalian brain. We used Cre-mediated conditional deletion of Rac1 in neurons combined with knockout of neuron-specific Rac3 to study the role of these GTPases in neural development. We found that lack of both genes causes motor behavioral defects, epilepsy, and premature death of mice. Deletion of either GTPase does not produce evident phenotypes. Double-knockout mice show specific defects in the development of the hippocampus. Selective impairment of the dorsal hilus of double-knockout animals is associated with alteration in the formation of the hippocampal circuitry. Axonal pathways to and from the dorsal hilus are affected because of the deficit of hilar mossy cells. Moreover, analysis of Rac function in hippocampal cultures shows that spine formation is strongly hampered only in neurons lacking both Rac proteins. These findings show for the first time that both Rac1 and Rac3 are important for the development of the nervous system, wherein they play complementary roles during late stages of neuronal and brain development.
There is a well-established link between inflammation and cancer of various organs, but little data are available on inflammation-associated markers of diagnostic and prognostic clinical utility in pulmonary malignancy. Blood samples were prospectively collected from 75 resectable lung cancer patients before surgery and in a cohort of 1,358 high-risk subjects. Serum levels of long pentraxin 3 (PTX3) were determined by high-sensitivity ELISA. PTX3 immunostaining was evaluated by immunohistochemistry in cancer tissue. Serum PTX3 levels in the high-risk population were not predictive of developing subsequent lung cancer or any other malignancy; however, serum PTX3 values in patients with lung cancer were significantly higher compared with cancer-free heavy smokers. With a cutoff of 4.5 ng/ml, specificity was 0.80, sensitivity 0.69, positive predictive value 0.15 and negative predictive value 0.98. The receiver operating curve (ROC) for serum PTX3 had an area under the curve (AUC) of 83.52%. Preoperative serum PTX3 levels in lung cancer patients did not correlate with patient outcome, but high interstitial expression of PTX3 in resected tumor specimens was a significant independent prognostic factor associated with shorter survival (p < 0.001). These results support the potential of serum PTX3 as a lung cancer biomarker in high-risk subjects. Furthermore, PTX3 immunohistochemistry findings support the role of local inflammatory mechanisms in determining clinical outcome and suggest that local expression of PTX3 may be of prognostic utility in lung cancer patients.Despite advancements in surgery, anesthesiology and the improvement of chemotherapy and radiotherapy regimens, the prognosis for clinically detected lung cancer remains dismal, with overall 5-year survival rates of 5-15%. Even with early-stage disease 30-40% of the patients ultimately relapse and die, 1 suggesting that sophisticated biological mechanisms affect their outcome that are not reflected by pathological stage alone. For such a reason, prognostic markers independent of stage are actively sought.In the last few years, leukocyte counts and blood levels of several inflammation markers have been correlated with lung cancer prognosis 2 or investigated as lung cancer risk predictors. 3,4 The role of inflammation in cancer pathogenesis and progression-that has long been investigated-includes the generation of reactive oxygen/nitrogen species and the secretion of cytokines, chemokines and proangiogenic factors. [5][6][7][8] In lung cancer, in addition to smoking-the predominant risk factor-inflammatory conditions such as chronic obstructive pulmonary disease, 9 pulmonary fibrosis and chronic lung infections 10,11 as well as polymorphisms of inflammatory genes 12 are all associated with an increased risk.
Obesity and periodontal disease could synergistically amplify the inflammatory and oxidative status, resulting in increased local and systemic biomarkers particularly when GDM is diagnosed.
Controlling oxidative stress through the activation of antioxidant pathways is crucial in bone homeostasis, and impairments of the cellular defense systems involved contribute to the pathogenesis of common skeletal diseases. In this work we focused on the dipeptidyl peptidase 3 (DPP3), a poorly investigated ubiquitous zinc‐dependent exopeptidase activating the Keap1‐Nrf2 antioxidant pathway. We showed Dpp3 expression in bone and, to understand its role in this compartment, we generated a Dpp3 knockout (KO) mouse model and specifically investigated the skeletal phenotype. Adult Dpp3 KO mice showed a mild growth defect, a significant increase in bone marrow cellularity, and bone loss mainly caused by increased osteoclast activity. Overall, in the mouse model, lack of DPP3 resulted in sustained oxidative stress and in alterations of bone microenvironment favoring the osteoclast compared to the osteoblast lineage. Accordingly, in vitro studies revealed that Dpp3 KO osteoclasts had an inherent increased resorptive activity and ROS production, which on the other hand made them prone to apoptosis. Moreover, absence of DPP3 augmented bone loss after estrogen withdrawal in female mice, further supporting its relevance in the framework of bone pathophysiology. Overall, we show a nonredundant role for DPP3 in the maintenance of bone homeostasis and propose that DPP3 might represent a possible new osteoimmunological player and a marker of human bone loss pathology. © 2019 American Society for Bone and Mineral Research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.