The elderly population living in nursing homes is particularly vulnerable to COVID-19 although individual susceptibility to SARS-CoV-2 infection may be related to the host microbiota. The objective of this work was to investigate the effect of Ligilactobacillus salivarius MP101 on the functional (Barthel index), cognitive (GDS/FAST), and nutritional (MNA) status as well as on the nasal and fecal inflammatory profiles of elderly residents living in a nursing home that is highly affected by COVID-19. A total of 25 residents participated in the trial, which involved the daily ingestion of a dairy product (L. salivarius MP101: 9.3 log10 CFU per unit) for 4 months. Nasal and fecal samples were analyzed for 37 immune factors at recruitment and at the end of the study. After the trial, no change in the GDS/FAST scores were found but, in contrast, the values for the Barthel index and the MNA score improved significantly. The concentrations of some immune factors changed significantly after the trial, including a decrease in the concentrations of BAFF/TNFSF13B, APRIL/TNFSF13, IL8, IL31, osteopontin, sTNF-R1, and sTNF-R2, and an increase in chitinase 3-like 1, IL19, IL35, and pentraxin 3 was also observed. In conclusion, L. salivarius MP101 seems to be a promising strain for improving or maintaining health in this highly vulnerable population.
Elderly was the most affected population during the first COVID-19 and those living in nursing homes represented the most vulnerable group, with high mortality rates, until vaccines became available. In a previous article, we presented an open-label trial showing the beneficial effect of the strain Ligilactobacillus salivarius CECT 30632 (previously known as L. salivarius MP101) on the functional and nutritional status, and on the nasal and fecal inflammatory profiles of elderly residing in a nursing home highly affected by the pandemic. The objective of this post-hoc analysis was to elucidate if there were changes in the nasal and fecal bacteriomes of a subset of these patients as a result of the administration of the strain for 4 months and, also, its impact on their fecal fatty acids profiles. Culture-based methods showed that, while L. salivarius (species level) could not be detected in any of the fecal samples at day 0, L. salivarius CECT 30632 (strain level) was present in all the recruited people at day 120. Paradoxically, the increase in the L. salivarius counts was not reflected in changes in the metataxonomic analysis of the nasal and fecal samples or in changes in the fatty acid profiles in the fecal samples of the recruited people. Overall, our results indicate that L. salivarius CECT 30632 colonized, at least temporarily, the intestinal tract of the recruited elderly and may have contributed to improvements in their functional, nutritional, and immunological status, without changing the general structure of their nasal and fecal bacteriomes when assessed at the genus level. They also suggest the ability of low abundance bacteria to train immunity.
In the frame of SARS-CoV-2 infection, studies regarding cytokine profiling of mucosal-related samples are scarce despite being the primary infection sites. The objective of this study was to compare the nasal and fecal inflammatory profiles of elderly individuals living in a nursing home highly affected by COVID-19 (ELD1) with those of elderly individuals living in a nursing home with no cases of SARS-CoV-2 infection (ELD2) and, also, with those of healthy SARS-CoV-2-negative younger adults (YHA). BAFF/TNFSF13B, IL6, IL10 and TNF-α (immunological hallmarks of SARS-CoV-2 infection) were the only immune factors whose concentrations were different in the three groups. Their highest concentrations were achieved in the ELD1 group. Nasal and fecal concentrations of a wide number of pro-inflammatory cytokines were similar in the ELD1 and ELD2 groups but higher than those found in the YHA samples. These results reinforce the hypothesis that immunosenescence and inflammaging rendered the elderly as a highly vulnerable population to a neo-infection, such as COVID-19, which was evidenced during the first pandemic waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.