On March 12th, 2020, the WHO declared COVID-19 as a pandemic. The collective impact of environmental and ecosystem factors, as well as biodiversity, on the spread of COVID-19 and its mortality evolution remain empirically unknown, particularly in regions with a wide ecosystem range. The aim of our study is to assess how those factors impact on the COVID-19 spread and mortality by country. This study compiled a global database merging WHO daily case reports (of 218 countries) with other publicly available measures from January 21st to May 18th, 2020. We applied spatio-temporal models to identify the influence of biodiversity, temperature, and precipitation and fitted generalized linear mixed models to identify the effects of environmental variables. Additionally, we used count time series to characterize the association between COVID-19 spread and air quality factors. All analyses are adjusted by social demographic, country-income level, and government policy intervention confounders, among 160 countries, globally. Our results reveal a statistically meaningful association between COVID-19 infection and several factors of interest at country and city levels such as the national biodiversity index, air quality, and pollutants elements (PM
10,
PM
2.5
and O
3
). Particularly, there is a significant relationship of loss of biodiversity, high level of air pollutants, and diminished air quality with COVID-19 infection spread and mortality. Our findings provide an empirical foundation for future studies on the relationship between air quality variables, a country’s biodiversity, and COVID-19 transmission and mortality. The significant relationships measured in this study can be valuable when governments plan environmental and health policies, as alternative strategy to respond to new COVID-19 outbreaks and prevent future crises.
We define a new distance measure for ranking data using a mixture of copula functions. Our distance measure evaluates the dissimilarity of subjects' ranking preferences to segment them via hierarchical cluster analysis. The proposed distance measure builds upon Spearman grade correlation coefficient on a copula transformation of rank denoting the level of importance assigned by subjects on the classification of k objects. These mixtures of copulae enable flexible modeling of the different types of dependence structures found in data and the consideration of various circumstances in the classification process. For example, by using mixtures of copulae with lower and upper tail dependence, we can emphasize the agreement on extreme ranks when they are considered important.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.