Small-molecule inhibitors of the CDK4/6 cell-cycle kinases have shown clinical efficacy in estrogen receptor (ER)-positive metastatic breast cancer, although their cytostatic effects are limited by primary and acquired resistance. Here we report that ER-positive breast cancer cells can adapt quickly to CDK4/6 inhibition and evade cytostasis, in part, via noncanonical cyclin D1-CDK2–mediated S-phase entry. This adaptation was prevented by cotreatment with hormone therapies or PI3K inhibitors, which reduced the levels of cyclin D1 (CCND1) and other G1–S cyclins, abolished pRb phosphorylation, and inhibited activation of S-phase transcriptional programs. Combined targeting of both CDK4/6 and PI3K triggered cancer cell apoptosis in vitro and in patient-derived tumor xenograft (PDX) models, resulting in tumor regression and improved disease control. Furthermore, a triple combination of endocrine therapy, CDK4/6, and PI3K inhibition was more effective than paired combinations, provoking rapid tumor regressions in a PDX model. Mechanistic investigations showed that acquired resistance to CDK4/6 inhibition resulted from bypass of cyclin D1–CDK4/6 dependency through selection of CCNE1 amplification or RB1 loss. Notably, although PI3K inhibitors could prevent resistance to CDK4/6 inhibitors, they failed to resensitize cells once resistance had been acquired. However, we found that cells acquiring resistance to CDK4/6 inhibitors due to CCNE1 amplification could be resensitized by targeting CDK2. Overall, our results illustrate convergent mechanisms of early adaptation and acquired resistance to CDK4/6 inhibitors that enable alternate means of S-phase entry, highlighting strategies to prevent the acquisition of therapeutic resistance to these agents.
Paracrine signaling through receptor activator of NF-kB (RANK) pathway mediates the expansion of mammary epithelia that occurs during pregnancy, and activation of RANK pathway promotes mammary tumorigenesis in mice. In this study we extend these previous data to human cells and show that the RANK pathway promotes the development of mammary stem cells and breast cancer. Overexpression of RANK (FL-RANK) in a panel of tumoral and normal human mammary cells induces the expression of breast cancer stem and basal/stem cell markers. High levels of RANK in untransformed MCF10A cells induce changes associated with both stemness and transformation, including mammary gland reconstitution, epithelial-mesenchymal transition (EMT), increased migration, and anchorage-independent growth. In addition, spheroids of RANK overexpressing MCF10A cells display disrupted acinar formation, impair growth arrest and polarization, and luminal filling. RANK overexpression in tumor cells with nonfunctional BRCA1 enhances invasiveness in acinar cultures and increases tumorigenesis and metastasis in immunodeficient mice. High levels of RANK were found in human primary breast adenocarcinomas that lack expression of the hormone receptors, estrogen and progesterone, and in tumors with high pathologic grade and proliferation index; high RANK/RANKL expression was significantly associated with metastatic tumors. Together, our findings show that RANK promotes tumor initiation, progression, and metastasis in human mammary epithelial cells by increasing the population of CD44 þ CD24À cells, inducing stemness and EMT. These results suggest that RANK expression in primary breast cancer associates with poor prognosis. Cancer Res; 72(11); 2879-88. Ó2012 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.