The Asian vinegar fly Drosophila suzukii (spotted wing Drosophila [SWD]) has emerged as a major invasive insect pest of small and stone fruits in both the Americas and Europe since the late 2000s. While research efforts have rapidly progressed in Asia, North America, and Europe over the past 5 years, important new insights may be gained in comparing and contrasting findings across the regions affected by SWD. In this review, we explore common themes in the invasion biology of SWD by examining (1) its biology and current pest status in endemic and recently invaded regions; (2) current efforts and future research needs for the development of predictive models for its geographic expansion; and (3) prospects for both natural and classical (=importation) biological control of SWD in invaded habitats, with emphasis on the role of hymenopteran parasitoids. We conclude that particularly fruitful areas of research should include fundamental studies of its overwintering, host-use, and dispersal capabilities; as well as applied studies of alternative, cost-effective management techniques to complement insecticide use within the integrated pest management framework. Finally, we emphasize that outreach efforts are critical to effective SWD management by highlighting successful Communicated by M. Traugott. Electronic supplementary materialThe online version of this article (strategies and insights gained from various geographic regions.Keywords Biological control Á Drosophila Á Frugivore Á Integrated pest management Á Invasion biology Key message• Spotted wing Drosophila (SWD) is a major invasive pest of soft fruits in the Americas and Europe. • We review the current global distribution and economic impacts of SWD, develop models for predicting its further spread, and discuss the prospects for biological control of this pest. • The following research areas into SWD biology appear particularly promising: its biology at low temperatures, the dispersal and migratory abilities of adults, and exploration in Asian regions for potential classical biological control agents.
Drosophila suzukii ovoposits and feeds on healthy fruits, unlike most other Drosophila species. It has been traditionally reported from Asia, but in the last 2 years it has been recorded from North America, where it is causing a lot of agricultural damage. Herein we report the first records of, D. suzukii in Europe. It has been found in different localities expanding an altitudinal range from 27 to 1550 m above sea level (ab.s.l). Furthermore by comparing collections of drosophilids from different European populations distributed along a latitudinal cline we were able to determine its high dispersal ability since it spread approximately 1400 km in 1 year either actively or passively through infested fruits. The similarities of the introduction dates in North America and Europe and the COI haplotypes suggest that the two invasions could be related. No considerable damage on crops has been reported yet in Europe. However, if this species gets established in more temperate localities it could become a serious pest. Therefore tracking the invasion of this species is recommended. An early detection of this potential pest is decisive for good management of the fields.
The spatial distribution of neutral genetic diversity is mainly influenced by barriers to dispersal. The nature of such barriers varies according to the dispersal means and capabilities of the organisms concerned. Although these barriers are often obvious on land, in the ocean they can be more difficult to identify. Determining the relative influence of physical and biotic factors on genetic connectivity remains a major challenge for marine ecologists. Here, we compare gene flow patterns of 7 littoral fish species from 6 families with a range of early-life-history traits sampled at the same geographic locations across common environmental discontinuities in the form of oceanic fronts in the Western Mediterranean. We show that these fronts represent major barriers to gene flow and have a strong influence on the population genetic structure of some fish species. We also found no significant relation between the early-life-history traits most commonly investigated (egg type, pelagic larval duration, and inshore-offshore spawning) and gene flow patterns, suggesting that other life-history factors should deserve attention. The fronts analyzed and the underlying physical mechanisms are not site-specific but common among the oceans, suggesting the generality of our findings.gene flow ͉ microsatellite ͉ ocean circulation ͉ pelagic stages
Deciphering invasion routes from molecular data is crucial to understanding biological invasions, including identifying bottlenecks in population size and admixture among distinct populations. Here, we unravel the invasion routes of the invasive pest Drosophila suzukii using a multi-locus microsatellite dataset (25 loci on 23 worldwide sampling locations). To do this, we use approximate Bayesian computation (ABC), which has improved the reconstruction of invasion routes, but can be computationally expensive. We use our study to illustrate the use of a new, more efficient, ABC method, ABC random forest (ABC-RF) and compare it to a standard ABC method (ABC-LDA). We find that Japan emerges as the most probable source of the earliest recorded invasion into Hawaii. Southeast China and Hawaii together are the most probable sources of populations in western North America, which then in turn served as sources for those in eastern North America. European populations are genetically more homogeneous than North American populations, and their most probable source is northeast China, with evidence of limited gene flow from the eastern US as well. All introduced populations passed through bottlenecks, and analyses reveal five distinct admixture events. These findings can inform hypotheses concerning how this species evolved between different and independent source and invasive populations. Methodological comparisons indicate that ABC-RF and ABC-LDA show concordant results if ABC-LDA is based on a large number of simulated datasets but that ABC-RF out-performs ABC-LDA when using a comparable and more manageable number of simulated datasets, especially when analyzing complex introduction scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.