The Asian vinegar fly Drosophila suzukii (spotted wing Drosophila [SWD]) has emerged as a major invasive insect pest of small and stone fruits in both the Americas and Europe since the late 2000s. While research efforts have rapidly progressed in Asia, North America, and Europe over the past 5 years, important new insights may be gained in comparing and contrasting findings across the regions affected by SWD. In this review, we explore common themes in the invasion biology of SWD by examining (1) its biology and current pest status in endemic and recently invaded regions; (2) current efforts and future research needs for the development of predictive models for its geographic expansion; and (3) prospects for both natural and classical (=importation) biological control of SWD in invaded habitats, with emphasis on the role of hymenopteran parasitoids. We conclude that particularly fruitful areas of research should include fundamental studies of its overwintering, host-use, and dispersal capabilities; as well as applied studies of alternative, cost-effective management techniques to complement insecticide use within the integrated pest management framework. Finally, we emphasize that outreach efforts are critical to effective SWD management by highlighting successful Communicated by M. Traugott. Electronic supplementary materialThe online version of this article (strategies and insights gained from various geographic regions.Keywords Biological control Á Drosophila Á Frugivore Á Integrated pest management Á Invasion biology Key message• Spotted wing Drosophila (SWD) is a major invasive pest of soft fruits in the Americas and Europe. • We review the current global distribution and economic impacts of SWD, develop models for predicting its further spread, and discuss the prospects for biological control of this pest. • The following research areas into SWD biology appear particularly promising: its biology at low temperatures, the dispersal and migratory abilities of adults, and exploration in Asian regions for potential classical biological control agents.
The codling moth, Cydia pomonella, is an important fruit pest worldwide. As nocturnal animals, adults depend to a large extent on olfactory cues for detection of food and mates, and, for females, oviposition sites. In insects, odor detection is mediated by odorant receptors (ORs) and ionotropic receptors (IRs), which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim was to identify chemosensory receptors in the codling moth as a means to uncover new targets for behavioral interference. Using next-generation sequencing techniques, we identified a total of 43 candidate ORs, one gustatory receptor and 15 IRs in the antennal transcriptome. Through Blast and sequence similarity analyses we annotated the insect obligatory co-receptor ORco, five genes clustering in a conserved clade containing sex pheromone receptors, one homolog of the Bombyx mori female-enriched receptor BmorOR30 (but no homologs of the other B. mori female-enriched receptors) and one gene clustering in the sugar receptor family. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a, and one homolog of an IR involved in phenylethyl amine detection in Drosophila. Our results open for functional characterization of the chemosensory receptors of C. pomonella, with potential for new or refined applications of semiochemicals for control of this pest insect.
a b s t r a c tSeveral pests and diseases have grapevine as their favourite host and the vineyard as preferred environment, so an intensive pesticide schedule is usually required to meet qualitative and quantitative production standards. The need to prevent the negative impact of synthetic chemical pesticides on human health and the environment and the consumer expectations in term of chemical residues in food stimulated the research of innovative tools and methods for sustainable pest management. The research project PURE (www.pure-ipm.eu) was a Europe-wide framework, which demonstrated that several solutions are now available for the growers and evaluated several new alternatives that are under development or almost ready for being applied in practice. Although the use of resistant/tolerant varieties is not yet feasible in several traditional grape growing areas, at least part of the synthetic chemical pesticides can be substituted with biocontrol agents to control pests and pathogens and/or pheromone mating disruption, or the number of treatments can be reduced by the use of decision support systems, which identify the optimal timing for the applications. This review presents the state of the art and the perspectives in the field of grapevine protection tools and strategies.
The codling moth Cydia pomonella, a major invasive pest of pome fruit, has spread around the globe in the last half century. We generated a chromosome-level scaffold assembly including the Z chromosome and a portion of the W chromosome. This assembly reveals the duplication of an olfactory receptor gene (OR3), which we demonstrate enhances the ability of C. pomonella to exploit kairomones and pheromones in locating both host plants and mates. Genome-wide association studies contrasting insecticide-resistant and susceptible strains identify hundreds of single nucleotide polymorphisms (SNPs) potentially associated with insecticide resistance, including three SNPs found in the promoter of CYP6B2. RNAi knockdown of CYP6B2 increases C. pomonella sensitivity to two insecticides, deltamethrin and azinphos methyl. The high-quality genome assembly of C. pomonella informs the genetic basis of its invasiveness, suggesting the codling moth has distinctive capabilities and adaptive potential that may explain its worldwide expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.