This study aimed to provide information regarding viral pathogenesis and molecular epidemiology linked with recently reported atypical porcine pestivirus (APPV) strains and to determine the circulation of APPV in Spain from 1997 to 2016. Two-day-old piglets with moderate-severe congenital tremor (CT) from a Spanish farm were received for diagnostic purposes. Sera, nasal and rectal swabs and tissue samples were collected. qRT-PCR was performed in these samples, and a retrospective study to detect APPV RNA was carried out using a serum collection from 1997 to 2016. APPV genome was identified with high and moderate RNA loads in different tissues of the CT affected pigs. High APPV RNA load was detected in lymphoid organs, suggesting that these constitute a target for APPV replication. In 89 of the 642 retrospectively analysed samples (13.9%), APPV genome was detected. CT cases were related to the presence of APPV in viraemic piglets below 1 week of age, in which the viral RNA load was the highest. A considerable number of animals between 4 and 14 weeks of age and some 1-week-old piglets were viraemic in the absence of CT, which can act as carriers of the virus. The relative risk of APPV and CT was 8.5 (CI 95% 5.8-12.5). Thus, our data show that APPV infection is epidemiologically related to CT. Phylogenetic analysis from 1615 NS2-3 nucleotides showed only one defined APPV clade, grouping the most phylogenetically related strains from Europe and China. Of this clade, there are other strains from Europe, USA and China. This data confirm the high APPV genetic diversity, not being able to cluster this virus according to the geographic area. Our result showed that APPV has been circulating in Spain at least since 1997, being the earliest date of detection of this virus worldwide and suggesting that APPV may be widespread.
The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains.
In this study, we compared the virulence in weaner pigs of the Pinar del Rio isolate and the virulent Margarita strain. The latter caused the Cuban classical swine fever (CSF) outbreak of 1993. Our results showed that the Pinar del Rio virus isolated during an endemic phase is clearly of low virulence. We analysed the complete nucleotide sequence of the Pinar del Rio virus isolated after persistence in newborn piglets, as well as the genome sequence of the inoculum. The consensus genome sequence of the Pinar del Rio virus remained completely unchanged after 28days of persistent infection in swine. More importantly, a unique poly-uridine tract was discovered in the 3'UTR of the Pinar del Rio virus, which was not found in the Margarita virus or any other known CSFV sequences. Based on RNA secondary structure prediction, the poly-uridine tract results in a long single-stranded intervening sequence (SS) between the stem-loops I and II of the 3'UTR, without major changes in the stem- loop structures when compared to the Margarita virus. The possible implications of this novel insertion on persistence and attenuation remain to be investigated. In addition, comparison of the amino acid sequence of the viral proteins E, E1, E2 and p7 of the Margarita and Pinar del Rio viruses showed that all non-conservative amino acid substitutions acquired by the Pinar del Rio isolate clustered in E2, with two of them being located within the B/C domain. Immunisation and cross-neutralisation experiments in pigs and rabbits suggest differences between these two viruses, which may be attributable to the amino acid differences observed in E2. Altogether, these data provide fresh insights into viral molecular features which might be associated with the attenuation and adaptation of CSFV for persistence in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.