This work details the enzymatic generation of fluorescence nanomaterials and the use of this optical signal as the analytical parameter for the quantification of the substrate. More specifically, fluorescent copper nanoclusters have been obtained during the enzymatic reaction of tyramine oxidase and tyramine in the presence of Cu(II); the fluorescence intensity being proportional to the concentration of tyramine. The nanoclusters obtained show fluorescence at 445 nm by being excited at 320 nm and have been characterized by TEM, EDX, and XPS. The formation mechanism has also been studied, suggesting that under the optimal conditions (0.1 M MES buffer and pH = 6), the formation of the nanoclusters is due to the reducing properties of the product of the enzymatic reaction (p-hydroxybenzaldehyde) in MES buffer. The method shows a linear relationship with the concentration of tyramine in the range from 1.0·10−5 to 2.5·10−4 M, a RSD of 3% (n = 5) and a LOD of 6.3·10−6 M. The method has been applied to the determination of tyramine in sausage with good results.
Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.