S U M M A R YWe investigate shear wave polarization in the Hayward fault zone near Niles Canyon, Fremont, CA. Waveforms of 12 earthquakes recorded by a seven-accelerometer seismic array around the fault are analysed to clarify directional site effects in the fault damage zone. The analysis is performed in the frequency domain through H/V spectral ratios with horizontal components rotated from 0 • to 180 • , and in the time domain using the eigenvectors and eigenvalues of the covariance matrix method employing three component records. The near-fault ground motion tends to be polarized in the horizontal plane. At two on-fault stations where the local strike is N160 • , ground motion polarization is oriented N88 ± 19 • and N83 ± 32 • , respectively. At a third on-fault station, the motion is more complex with horizontal polarization varying in different frequency bands. However, a polarization of N86 ± 7 • , similar to the results at the other two on-fault stations, is found in the frequency band 6-8 Hz. The predominantly high-angle polarization from the fault strike at the Hayward Fault is consistent with similar results at the Parkfield section of the San Andreas Fault and the Val d'Agri area (a Quaternary extensional basin) in Italy. In all these cases, comparisons of the observed polarization directions with models of fracture orientation based on the fault movement indicate that the dominant horizontal polarization is near-orthogonal to the orientation of the expected predominant cracking direction. The results help to develop improved connections between fault mechanics and near-fault ground motion.
S U M M A R YDuring the M W 5.7 and 6.0 Umbria-Marche earthquakes of 1997 September 26, the historical centre of Nocera Umbra suffered MCS intensity VII-VIII. The zone is located on the top of a hill, a condition potentially favourable to ground motion amplification. However, also vulnerability is higher on the hill because of the ancient age of buildings. A temporary array of eight seismological stations was installed across the hill to quantify the amplification effect due to topography. Waveforms of 14 aftershocks (2.6 < M L < 4.1) are selected for the analysis. During each earthquake the largest amplitudes are observed on the hilltop, spectral ratios are computed using rotated horizontal components to search for directional effects. Amplifications are found in two separate frequency bands: one in the range 2-4 Hz, where the increase of amplitude is moderate (never exceeding a factor of 4) and the polarization is transversal to the hill major axis; the second above 10 Hz, where amplifications are larger and reach values as high as 25 Hz. High-frequency polarization varies for different sites and frequencies suggesting that smaller-scale complexities control the high frequency response. Synthetic seismograms of 2-D models confirm the occurrence of amplification, although not all details are fit by numerical simulations and the agreement between observations and models is significant only in terms of the fundamental resonance frequency, around 3 Hz. In the models, amplifications are much smaller than the observed ones. We conclude that topography could have been responsible for a small increase of damage in the hill zone but the most significant role on damage was played by the locally higher vulnerability.
We present the results of seismological and geophysical investigations performed by the "Istituto Nazionale di Geofisica e Vulcanologia" team operating in Amatrice village (Central Italy), in the emergency phases following the Mw 6.0 event of August 24th 2016, that caused severe damage in downtown and surrounding areas. Data from seven seismic stations equipped with both weak and strong motion sensors are analyzed in terms of standard spectral ratio to empirically define amplification function using a bedrock reference site. Ambient vibration spectral ratios between horizontal and vertical component of motion are also evaluated in a large number of sites, spread out in the investigated area, to recover the resonance frequency of the soft soil outcropping layers and to generalize the results obtained by earthquake data. Ambient noise vibration are also used for applying a 2D array approach based on surface waves techniques in order to define the near-surface velocity model and to verify its lateral variation. The results allows to better understand the amplification factors in the investigated area, showing spatial variation of site effects despite of the homogeneous shallow geological condition indicated by the microzonation studies available at moment of the described field campaign. The analysis reveals a diffuse amplification effect which reaches its maximum values in downtown area with a resonant frequency of about 2 Hz. The obtained results were used to integrate the microzonation studies and they can be used for urban planning and reconstruction activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.