Traditional Chinese medicine commands a unique position among all traditional medicines because of its 5000 years of history. Our own interest in natural products from traditional Chinese medicine was triggered in the 1990s, by artemisinin-type sesquiterpene lactones from Artemisia annua L. As demonstrated in recent years, this class of compounds has activity against malaria, cancer cells, and schistosomiasis. Interestingly, the bioactivity of artemisinin and its semisynthetic derivative artesunate is even broader and includes the inhibition of certain viruses, such as human cytomegalovirus and other members of the Herpesviridae family (e.g., herpes simplex virus type 1 and Epstein-Barr virus), hepatitis B virus, hepatitis C virus, and bovine viral diarrhea virus. Analysis of the complete profile of the pharmacological activities and molecular modes of action of artemisinin and artesunate and their performance in clinical trials will further elucidate the full antimicrobial potential of these versatile pharmacological tools from nature.
Farnesoid X receptor (FXR) has been recently reported to enhance chemoresistance through bile acid-independent mechanisms. Thus, FXR transfection plus activation with GW4064 resulted in reduced sensitivity to cisplatin-induced toxicity. This is interesting because primary tumors of the liver, an organ where FXR is expressed, exhibit marked refractoriness to pharmacological treatment. Here we have determined whether FXR is upregulated in hepatocellular carcinoma (HCC), cholangiocarcinoma (CGC) and hepatoblastoma (HPB) and whether this is related with the expression of genes involved in mechanisms of chemoresistance. Using RT-QPCR and Taqman low density arrays we have analyzed biopsies from healthy livers or surgically removed tumors from naive patients and cell lines derived from HCC (SK-HEP-1, Alexander and Huh7), CGC (TFK1) and HPB (HepG2), before and after exposure to cisplatin at IC50 for 72 h. In liver tumors FXR expression was not enhanced but significantly decreased (healthy liver > HCC > HPB ≈ CGC). Except for CGC, this was not accompanied by changes in the proportions of FXR isoforms. Changes in 36 genes involved in drug uptake/efflux and metabolism, expression/function of molecular targets, and survival/apoptosis balance were found. Changes affecting SLC22A1, CYP2A1 and BIRC5 were shared by HCC, CGC and HPB. Similarity in gene expression profiles between cell lines and parent tumors was found. Pharmacological challenge with cisplatin induced changes that increased this resemblance. This was not dependent upon FXR expression. Thus, although FXR may play a role in inducing chemoresistance under certain circumstances, its upregulation does not seem to be involved in the multidrug resistance phenotype characteristic of HCC, CGC and HPB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.