Tumor suppressor genes evolved as negative effectors of mitogen and nutrient signaling pathways, such that mutations in these genes can lead to pathological states of growth. Tuberous sclerosis (TSC) is a potentially devastating disease associated with mutations in two tumor suppressor genes, TSC1 and 2, that function as a complex to suppress signaling in the mTOR/S6K/4E-BP pathway. However, the inhibitory target of TSC1/2 and the mechanism by which it acts are unknown. Here we provide evidence that TSC1/2 is a GAP for the small GTPase Rheb and that insulin-mediated Rheb activation is PI3K dependent. Moreover, Rheb overexpression induces S6K1 phosphorylation and inhibits PKB phosphorylation, as do loss-of-function mutations in TSC1/2, but contrary to earlier reports Rheb has no effect on MAPK phosphorylation. Finally, coexpression of a human TSC2 cDNA harboring a disease-associated point mutation in the GAP domain, failed to stimulate Rheb GTPase activity or block Rheb activation of S6K1.
During the evolution of metazoans and the rise of systemic hormonal regulation, the insulin-controlled class 1 phosphatidylinositol 3OH-kinase (PI3K) pathway was merged with the primordial amino acid-driven mammalian target of rapamycin (mTOR) pathway to control the growth and development of the organism. Insulin regulates mTOR function through a recently described canonical signaling pathway, which is initiated by the activation of class 1 PI3K. However, how the amino acid input is integrated with that of the insulin signaling pathway is unclear. Here we used a number of molecular, biochemical, and pharmacological approaches to address this issue. Unexpectedly, we found that a major pathway by which amino acids control mTOR signaling is distinct from that of insulin and that, instead of signaling through components of the insulin͞class 1 PI3K pathway, amino acids mediate mTOR activation by signaling through class 3 PI3K, hVps34.insulin ͉ nutrients ͉ S6 kinase 1 ͉ endosomes ͉ PI3P
Mechanisms controlling the proliferative activity of neural stem and progenitor cells (NSPCs) have a pivotal role to ensure life-long neurogenesis in the mammalian brain1. How metabolic programs are coupled with NSPC activity remains unknown. Here we show that fatty acid synthase (Fasn), the key enzyme of de novo lipogenesis2, is highly active in adult NSPCs and that conditional deletion of Fasn in mouse NSPCs impairs adult neurogenesis. The rate of de novo lipid synthesis and subsequent proliferation of NSPCs is regulated by Spot14, a gene previously implicated in lipid metabolism3–5, that we found to be selectively expressed in low proliferating adult NSPCs. Spot14 reduces the availability of malonyl-CoA6, which is an essential substrate for Fasn to fuel lipogenesis. Thus, we identify here a functional coupling between the regulation of lipid metabolism and adult NSPC proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.