SummaryThe salt tolerance protein (STO) of Arabidopsis was identified as a protein conferring salt tolerance to yeast cells. In order to uncover its function, we isolated an STO T-DNA insertion line and generated RNAi and overexpressor Arabidopsis plants. Here we present data on the hypocotyl growth of these lines indicating that STO acts as a negative regulator in phytochrome and blue-light signalling. Transcription analysis of STO uncovered a light and circadian dependent regulation of gene expression, and analysis of light-regulated genes revealed that STO is involved in the regulation of CHS expression during de-etiolation. In addition, we could show that CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) represses the transcription of STO and contributes to the destabilization of the protein in etiolated seedlings. Microscopic analysis revealed that the STO:eGFP fusion protein is located in the nucleus, accumulates in a light-dependent manner, and, in transient transformation assays in onion epidermal cells, co-localizes with COP1 in nuclear and cytoplasmic aggregations. However, the analysis of gain-and loss-of-function STO mutants in the cop1-4 background points towards a COP1-independent role during photomorphogenesis.
Bacteria and archaea exhibit tactical behavior and can move up and down chemical gradients. This tactical behavior relies on a motility structure, which is guided by a chemosensory system. Environmental signals are sensed by membrane-inserted chemosensory receptors that are organized in large ordered arrays. While the cellular positioning of the chemotaxis machinery and that of the flagellum have been studied in detail in bacteria, we have little knowledge about the localization of such macromolecular assemblies in archaea. Although the archaeal motility structure, the archaellum, is fundamentally different from the flagellum, archaea have received the chemosensory machinery from bacteria and have connected this system with the archaellum. Here, we applied a combination of time-lapse imaging and fluorescence and electron microscopy using the model euryarchaeon Haloferax volcanii and found that archaella were specifically present at the cell poles of actively dividing rod-shaped cells. The chemosensory arrays also had a polar preference, but in addition, several smaller arrays moved freely in the lateral membranes. In the stationary phase, rod-shaped cells became round and chemosensory arrays were disassembled. The positioning of archaella and that of chemosensory arrays are not interdependent and likely require an independent form of positioning machinery. This work showed that, in the rod-shaped haloarchaeal cells, the positioning of the archaellum and of the chemosensory arrays is regulated in time and in space. These insights into the cellular organization of H. volcanii suggest the presence of an active mechanism responsible for the positioning of macromolecular protein complexes in archaea. IMPORTANCE Archaea are ubiquitous single cellular microorganisms that play important ecological roles in nature. The intracellular organization of archaeal cells is among the unresolved mysteries of archaeal biology. With this work, we show that cells of haloarchaea are polarized. The cellular positioning of proteins involved in chemotaxis and motility is spatially and temporally organized in these cells. This suggests the presence of a specific mechanism responsible for the positioning of macromolecular protein complexes in archaea.
Symbiosis with arbuscular mycorrhizal fungi (AMF) improves plant nutrition in most land plants, and its contribution to the colonization of land by plants has been hypothesized. Here, we identify a conserved transcriptomic response to AMF among land plants, including the activation of lipid metabolism. Using gain of function, we show the transfer of lipids from the liverwort Marchantia paleacea to AMF and its direct regulation by the transcription factor WRINKLED (WRI). Arbuscules, the nutrient-exchange structures, were not formed in loss-of-function wri mutants in M. paleacea, leading to aborted mutualism. Our results show the orthology of the symbiotic transfer of lipids across land plants and demonstrate that mutualism with arbuscular mycorrhizal fungi was present in the most recent ancestor of land plants 450 million years ago.
SummaryThe highly glycosylated peptide hormone erythropoietin (EPO) plays a key role in the regulation of erythrocyte maturation. Currently, marketed EPO is produced by recombinant technology in mammalian cell cultures. The complementary DNA (cDNA) for human EPO (hEPO) was transiently and stably expressed in the moss Physcomitrella patens wild-type and ∆ -fuc-t ∆ -xyl-t mutant, the latter containing N -glycans lacking the plant-specific, corebound α 1,3-fucose and β 1,2-xylose. New expression vectors were designed based on a Physcomitrella ubiquitin gene-derived promoter for the expression of hEPO cDNA. Transient expression in protoplasts was much stronger at 10 than at 20 ° C. In Western blot analysis, the molecular size of moss-produced recombinant human EPO (rhEPO) was identified to be 30 kDa, and it accumulated in the medium of transiently transformed protoplasts to high levels around 0.5 µ g/mL. Transgenic Physcomitrella ∆ -fuc-t ∆ -xyl-t mutant lines expressing EPO cDNA showed secretion of rhEPO through the cell wall to the culture medium. In 5-and 10-L photobioreactor cultures, secreted rhEPO accumulated to high levels above 250 µ g/g dry weight of moss material after 6 days. Silver staining of rhEPO on sodium dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE) taken from the bioreactor culture demonstrated a high purity of the over-expressed secreted rhEPO, with a very low background of endogenous moss proteins. Peptide mapping of rhEPO produced by the Physcomitrella ∆ -fuc-t ∆ -xyl-t mutant indicated correct processing of the plant-derived signal peptide. All three N -glycosylation sites of rhEPO were occupied by complex-type N -glycans completely devoid of the plant-specific core sugar residues fucose and xylose.
Motility is a central feature of many microorganisms and provides an efficient strategy to respond to environmental changes. Bacteria and archaea have developed fundamentally different rotary motors enabling their motility, termed flagellum and archaellum, respectively. Bacterial motility along chemical gradients, called chemotaxis, critically relies on the response regulator CheY, which, when phosphorylated, inverses the rotational direction of the flagellum via a switch complex at the base of the motor. The structural difference between archaellum and flagellum and the presence of functional CheY in archaea raises the question of how the CheY protein changed to allow communication with the archaeal motility machinery. Here we show that archaeal CheY shares the overall structure and mechanism of magnesium-dependent phosphorylation with its bacterial counterpart. However, bacterial and archaeal CheY differ in the electrostatic potential of the helix α4. The helix α4 is important in bacteria for interaction with the flagellar switch complex, a structure that is absent in archaea. We demonstrated that phosphorylation-dependent activation, and conserved residues in the archaeal CheY helix α4, are important for interaction with the archaeal-specific adaptor protein CheF. This forms a bridge between the chemotaxis system and the archaeal motility machinery. Conclusively, archaeal CheY proteins conserved the central mechanistic features between bacteria and archaea, but differ in the helix α4 to allow binding to an archaellum-specific interaction partner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.