The breast cancer stem cell (BCSC) hypotheses suggest that breast cancer is derived from a single tumor-initiating cell with stem-like properties, but the source of these cells is unclear. We previously observed that induction of an immune response against an epithelial breast cancer led in vivo to the T-cell-dependent outgrowth of a tumor, the cells of which had undergone epithelial to mesenchymal transition (EMT). The resulting mesenchymal tumor cells had a CD24À/lo CD44 + phenotype, consistent with BCSCs. In the present study, we found that EMT was induced by CD8 T cells and the resulting tumors had characteristics of BCSCs, including potent tumorigenicity, ability to reestablish an epithelial tumor, and enhanced resistance to drugs and radiation. In contrast to the hierarchal cancer stem cell hypothesis, which suggests that breast cancer arises from the transformation of a resident tissue stem cell, our results show that EMT can produce the BCSC phenotype. These findings have several important implications related to disease progression and relapse.
Uncontrolled proliferation is a defining feature of the malignant phenotype. Ki67 is a marker for proliferating cells and is overexpressed in many breast cancers. Atypical hyperplasia is a premalignant lesion of the breast (relative risk ~ 4.0). Here, we asked if Ki67 expression could stratify risk in women with atypia. Ki67 expression was assessed immunohistochemically by digital image analysis in archival sections from 192 women with atypia diagnosed at the Mayo Clinic 1/1/67–12/31/91. Risk factor and follow-up data were obtained via study questionnaire and medical records. Observed breast cancer events were compared to population expected rates (Iowa SEER) using standardized incidence ratios (SIRs). We examined two endpoints: risk of breast cancer within 10 years and after 10 years of atypia biopsy. Thirty-two (16.7%) of the 192 women developed breast cancer over a median of 14.6 years. Thirty percent (58) of the atypias had ≥2% cells staining for Ki67. In these women, the risk of breast cancer within 10 years after atypia was increased (SIR 4.42 [2.21–8.84]) but not in those with <2% staining. Specifically, the cumulative incidence for breast cancer at 10 years was 14% in the high Ki67 vs. 3% in the low Ki67 group. Conversely, after 10 years, risk in the low Ki67 group rose significantly (SIR 5.69 [3.63–8.92]) vs. no further increased risk in the high Ki67 group (SIR 0.78 [0.11–5.55]). Ki67 appears to be a time-varying biomarker of risk of breast cancer in women with atypical hyperplasia.
COX-2 appears to be a biomarker that further stratifies breast cancer risk among women with atypia and may be a relevant target for chemoprevention strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.