The overuse of antibiotics in livestock contributes to the antibiotic resistance pandemic. The assessment of the actual antibiotic consumption is crucial in limiting the expansion of the problem effectively. The aim of this study was to provide the first qualitative and quantitative analysis of antimicrobial usage using data from paper-based registers on dairy and beef farms located in the Umbria region, Italy. Antimicrobial therapies of a one-year period were collected from 101 farms with at least 50 cattle each. Defined daily doses (DDDvet) and defined course doses (DCDvet) were calculated per administration route and antimicrobial class. The total courses administered were fewer in beef (330.7 × 10−3 DCDvet/year) than in dairy farms (1034.1 × 10−3 DCDvet/year). The use of the highest priority critically important antimicrobials (HPCIAs) was higher (p = 0.0033) in dairy than in beef herds. In terms of DDDvet, the parenteral fluoroquinolone administration ranked second and fourth on dairy and beef farms, respectively; the consumption of beta-lactams was ten times higher on dairy than on beef farms. Our results confirm that intensive dairy management practices are associated with increased antibiotic consumption and highlight the necessity to strengthen the existing stewardship programs by involving all stakeholders in effective antimicrobial resistance reduction plans.
Antimicrobial resistance (AMR) arises mostly because of the use and abuse of antibiotics in both the human and veterinary sectors. Furthermore, antibiotic residues can be discharged into the environment, promoting the spread of AMR as well as becoming a potential ecotoxicological risk. Aquaculture is one such source of environmental pollution. In the present work, we evaluated the correlation between antibiotic consumption in 11 selected aquafarms located along the Nera River, and the detection of their residues in surface water and sediment samples gathered monthly from the same stream. Antibiotic consumption was calculated using the ESVAC defined daily doses for animals (DDDvet) method, and a chemical analysis was conducted using a multiclass method. Therefore, the ecological risk of antibiotics being detected in surface waters was established based on the risk quotient (RQ). A strong positive correlation was identified between the concentrations detected in surface waters and the consumption of flumequine (r = 72%, p-value = 0.0085) and florfenicol (r = 83%, p-value = 0.0008). The RQ, however, was low for all the detected antibiotics in surface waters. Therefore, we proved that the antibiotics used in aquaculture can reach the near aquatic environment, but, in this work, they did not represent a toxicological risk to the surrounding ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.