The paper discusses the results of a study carried out to determine the thermal condition of a conveyor power unit using a thermal imaging camera. The tests covered conveyors in the main haulage system carrying coal from a longwall. The measurements were taken with a thermal imaging diagnostic method which measures infrared radiation emitted by an object. This technology provides a means of assessing the imminence and severity of a possible failure or damage. The method is a non-contact measuring technique and offers great advantages in an underground mine. The thermograms were analysed by comparing the temperature distribution. An analysis of the operating time of the conveyors was also carried out and the causes of the thermal condition were determined. The main purpose of the research was to detect changes in thermal state during the operation of a belt conveyor that could indicate failure and permit early maintenance and eliminate the chance of a fire. The article also discusses the construction and principle of operation of a thermal imaging camera. The findings obtained from the research analysis on determining the thermal condition of the conveyor drive unit are a valuable source of information for the mine’s maintenance service.
The paper presents preliminary research conducted to determine the thermal condition of the main belt conveyor transporting coal from the longwall. The results show the thermal condition of the conveyor and in the further stage are used to effectively diagnose possible causes of damage to the belt conveyor’s drive unit. The tests were performed on the conveyor whose operation is strategic to the mine. The research comprised a thermal imaging camera that allows taking contact-free measurements. The main purpose of a thermal imaging measurement is to detect changes in thermal conditions without the need to stop the conveyor belt. The paper presents the methodology and discusses the manner of performing underground measurements as well as a procedure for processing the results. The final conclusions concerning the technical condition of the drive unit were based on the results and their analysis.
Underground fires are phenomena that pose a possibly fatal threat to human life, and they are particulary dangerous in the environment of underground workings where the amount of space and number possible escape routes are limited. Therefore, it is important to carefully control changes in temperature and the condition of machinery and equipment used in mine in order to avoid critical situations. The most common cause of fires are defects in mechanical and electrical devices, in order to conduct an analysis of their condition thermal imaging is perfectly suitable. In this article approximed a problem of underground fires, thermal imaging diagnostic method, temperature measurements taken in the KWK ROW Ruch Chwałowice in Rybnik, made an analysis of publicly available data from the KGHM mines and methods of combating the factors leading to the fire emergency been proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.