who were without any self-reported history of ligament or tendon injury. Both subjects and 6 healthy controls are from the same soccer teams, of the same ethnicity (Polish, East-Europeans for 7 ≥ 3 generations), a similar age category, and had a comparable level of exposure to ACL injury.
The COL5A1 and COL12A1 variants are independently associated with modulating the risk of anterior cruciate ligament (ACL) rupture in females. The objective of this study was to further investigate if COL3A1 and COL6A1 variants independently, as well as, collagen gene-gene interactions, modulate ACL rupture risk. Three hundred and thirty-three South African (SA, n = 242) and Polish (PL, n = 91) participants with diagnosed ACL ruptures and 378 controls (235 SA and 143 PL) were recruited. Participants were genotyped for COL3A1 rs1800255 G/A, COL5A1 rs12722 (T/C), COL6A1 rs35796750 (T/C) and COL12A1 rs970547 (A/G). No significant associations were identified between COL6A1 rs35796750 and COL3A1 rs1800255 genotypes and risk of ACL rupture in the SA cohort. The COL3A1 AA genotype was, however, significantly (p = 0.036) over-represented in the PL ACL group (9.9%, n = 9) when compared to the PL control (CON) group (2.8%, n = 4). Although there were genotype distribution differences between the SA and PL cohorts, the T+A-inferred pseudo-haplotype constructed from COL5A1 and COL12A1 was significantly over-represented in the female ACL group when compared to the female CON group within the SA (T+A ACL 50.5%, T+A CON 38.1%, p = 0.022), PL (T+A ACL 56.3%, T+A CON 36.3%, p = 0.029) and combined (T+A ACL 51.8%, T+A CON 37.5%, p = 0.004) cohorts. In conclusion, the novel main finding of this study was a significant interaction between the COL5A1 rs12722 T/C and COL12A1 rs970547 A/G variants and risk of ACL injury. These results highlight the importance of investigating gene-gene interactions in the aetiology of ACL ruptures in multiple independent cohorts.
ObjectivesThe aim of this study was to examine the association of +1245G/T polymorphisms in the COL1A1 gene with ACL ruptures in Polish male recreational skiers in a case-control study.MethodsA total of 138 male recreational skiers with surgically diagnosed primary ACL ruptures, all of whom qualified for ligament reconstruction, were recruited for this study. The control group comprised 183 apparently healthy male skiers with a comparable level of exposure to ACL injury, none of whom had any self-reported history of ligament or tendon injury. DNA samples extracted from the oral epithelial cells were genotyped for the +1245G/T polymorphisms using real-time PCR method.ResultsGenotype distributions among cases and controls conformed to Hardy-Weinberg equilibrium (p = 0.2469 and p = 0.33, respectively). There was a significant difference in the genotype distribution between skiers and controls (p = 0.045, Fisher's exact test). There was no statistical difference in allele distribution: OR 1.43 (0.91-2.25), p = 0.101 (two-sided Fisher's exact test).ConclusionsThe risk of ACL ruptures was around 1.43 times lower in carriers of a minor allele G as compared to carriers of the allele T.
The purpose of this study was to examine the association of the BstUI RFLP C/T (rs 12722) and DpnII RFLP C/T (rs 13946) COL5A1 polymorphisms, individually and as haplotypes, with anterior cruciate ligament ruptures in recreational skiers. Subjects were 138 male recreational skiers with surgically diagnosed primary anterior cruciate ligament ruptures. The control group consisted of 183 apparently healthy male recreational skiers, who were without any self-reported history of ligament or tendon injury. DNA was extracted from buccal cells donated by the subjects and genotyping was carried out using real-time PCR. The genotype distributions for both polymorphisms met Hardy-Weinberg expectations in both groups. There were no significant differences in genotype distribution of allele frequencies of COL5A1 BstUI RFLP C/T and COL5A1 DpnII RFLP C/T polymorphisms between the ACL rupture and control groups. The T-T (BstUI RFLP T, DpnII RFLP T) haplotype was the most common (55.6%). The haplotype T-C was not present in any of the subjects. There was an underrepresentation tendency of the C-T haplotype in the study group compared to controls under recessive mode of inheritance. Higher frequency of the COL5A1 BstUI RFLP C/T and COL5A1DpnII RFLP C/T polymorphisms haplotype is associated with reduced risk of anterior cruciate ligament injury in a group of apparently healthy male recreational skiers.
Although various intrinsic and extrinsic risk factors for anterior cruciate ligament (ACL) rupture have been identified, the exact aetiology of the injury is not yet fully understood. Type III collagen is an important factor in the repair of connective tissue, and certain gene polymorphisms may impair the tensile strength. The aim of this study was to examine the association of the COL3A1 rs1800255 polymorphism with ACL rupture in Polish male recreational skiers. A total of 321 male Polish recreational skiers were recruited for this study; 138 had surgically diagnosed primary ACL ruptures (ACL-injured group) and 183 were apparently healthy male skiers (control group – CON) who had no self-reported history of ligament or tendon injury. Both groups had a comparable level of exposure to ACL injury. Genomic DNA was extracted from the oral epithelial cells. All samples were genotyped on a real-time polymerase chain reaction instrument. The genotype distribution in the ACL-injured group was significantly different than in CON (respectively: AA=10.1 vs 2.2%, AG=22.5 vs 36.1, GG=67.4 vs 61.8%; p=0.0087). The AA vs AG+GG genotype of COL3A1 (odds ratio (OR)=5.05; 95% confidence interval (CI), 1.62-15.71, p=0.003) was significantly overrepresented in the ACL-injured group compared with CON. The frequency of the A allele was higher in the ACL-injured group (21.4%) compared with CON (20.2%), but the difference was not statistically significant (p=0.72). This study revealed an association between the COL3A1 rs1800255 polymorphism and ACL ruptures in Polish skiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.