The central thesis regarding the human ovaries is that, although primordial germ cells in embryonal ovaries are of extraovarian origin, those generated during the fetal period and in postnatal life are derived from the ovarian surface epithelium (OSE) bipotent cells. With the assistance of immune system-related cells, secondary germ cells and primitive granulosa cells originate from OSE stem cells in the fetal and adult human gonads. Fetal primary follicles are formed during the second trimester of intrauterine life, prior to the end of immune adaptation, possibly to be recognized as self-structures and renewed later. With the onset of menarche, a periodical oocyte and follicular renewal emerges to replace aging primary follicles and ensure that fresh eggs for healthy babies are always available during the prime reproductive period. The periodical follicular renewal ceases between 35 and 40 yr of age, and the remaining primary follicles are utilized during the premenopausal period until exhausted. However, the persisting oocytes accumulate genetic alterations and may become unsuitable for ovulation and fertilization. The human OSE stem cells preserve the character of embryonic stem cells, and they may produce distinct cell types, including new eggs in vitro, particularly when derived from patients with premature ovarian failure or aging and postmenopausal ovaries. Our observations also indicate that there are substantial differences in follicular renewal between adult human and rat ovaries. As part of this chapter, we present in detail protocols utilized to analyze oogenesis in humans and to study interspecies differences when compared to the ovaries of rat females.
The origin of oocytes and primary follicles in ovaries of adult mammalian females has been a matter of dispute for over 100 yr. The prevailing belief that all oocytes in adult mammalian females must persist from the fetal period of life seems to be a uniquely retrogressive reproductive mechanism requiring humans to preserve their gametes from the fetal period for several decades. The utilization of modern techniques during last 10 yr clearly demonstrates that mammalian primordial germ cells originate from somatic cell precursors. This indicates that if somatic cells are precursors of germ cells, then somatic mutations can be passed on to progeny. Mitotically active germline stem cells have been described earlier in ovaries of adult prosimian primates and recently have been reported to also be present in the ovaries of adult mice. We have earlier shown that in adult human females, mesenchymal cells in the ovarian tunica albuginea undergo a mesenchymal-epithelial transition into ovarian surface epithelium cells, which differentiate sequentially into primitive granulosa and germ cells. Recently, we have reported that these structures assemble in the deeper ovarian cortex and form new follicles to replace earlier primary follicles undergoing atresia (follicular renewal). Our current observations also indicate that follicular renewal exists in rat ovaries, and human oocytes can differentiate from ovarian surface epithelium in fetal ovaries in vivo and from adult ovaries in vitro. These reports challenge the established dogma regarding the fetal origin of eggs and primary follicles in adult mammalian ovaries. Our data indicate that the pool of primary follicles in adult human ovaries does not represent a static but a dynamic population of differentiating and regressing structures. Yet, the follicular renewal may cease at a certain age, and this may predetermine the onset of the natural menopause or premature ovarian failure. A lack of follicular renewal in aging ovaries may cause an accumulation of spontaneously arising or environmentally induced genetic alterations of oocytes, and that may be why aging females have a much higher chance of having oocytes with more mutations in persisting primary follicles.
Ten years ago, we reported that in adult human females the ovarian surface epithelium (OSE) is a source of germ cells. Recently, we also demonstrated that new primary follicles are formed by assembly of oocytes with nests of primitive granulosa cells in the ovarian cortex. The components of the new primary follicles, primitive granulosa and germ cells, differentiated sequentially from the OSE, which arises from cytokeratin positive mesenchymal progenitor cells residing in the ovarian tunica albuginea. In the present study, we investigated the possibility that the oocytes and granulosa cells may differentiate in cultures derived from adult human ovaries. Cells were scrapped from the surface of ovaries and cultured for 5 to 6 days, in the presence or absence of estrogenic stimuli [phenol red (PhR)]. The OSE cells cultured in the medium without PhR differentiated into small (15 micron) cells of granulosa phenotype, and epithelial, neural, and mesenchymal type cells. In contrast, OSE cells cultured in the presence of PhR differentiated directly into large (180 micron) cells of the oocyte phenotype. Such cells exhibited germinal vesicle breakdown, expulsion of the polar body, and surface expression of zona pellucida proteins, i.e. characteristics of secondary oocytes. These in vitro studies confirm our in vivo observations that in adult human ovaries, the OSE is a bipotent source of oocytes and granulosa cells. Development of numerous mature oocytes from adult ovarian stem cells in vitro offers new strategies for the egg preservation, IVF utilization, and treatment of female infertility. In addition, other clinical applications aiming to utilize stem cells, and basic stem cell research as well, may employ totipotent embryonic stem cells developing from fertilized oocytes.
Recent reports indicate that functional mouse oocytes and sperm can be derived in vitro from somatic cell lines. We hypothesize that in adult human ovaries, mesenchymal cells in the tunica albuginea (TA) are bipotent progenitors with a commitment for both primitive granulosa and germ cells. We investigated ovaries of twelve adult women (mean age 32.8 ± 4.1 SD, range 27–38 years) by single, double, and triple color immunohistochemistry. We show that cytokeratin (CK)+ mesenchymal cells in ovarian TA differentiate into surface epithelium (SE) cells by a mesenchymal-epithelial transition. Segments of SE directly associated with ovarian cortex are overgrown by TA, forming solid epithelial cords, which fragment into small (20 micron) epithelial nests descending into the lower ovarian cortex, before assembling with zona pellucida (ZP)+ oocytes. Germ cells can originate from SE cells which cover the TA. Small (10 micron) germ-like cells showing PS1 meiotically expressed oocyte carbohydrate protein are derived from SE cells via asymmetric division. They show nuclear MAPK immunoexpression, subsequently divide symmetrically, and enter adjacent cortical vessels. During vascular transport, the putative germ cells increase to oocyte size, and are picked-up by epithelial nests associated with the vessels. During follicle formation, extensions of granulosa cells enter the oocyte cytoplasm, forming a single paranuclear CK+ Balbiani body supplying all the mitochondria of the oocyte. In the ovarian medulla, occasional vessels show an accumulation of ZP+ oocytes (25–30 microns) or their remnants, suggesting that some oocytes degenerate. In contrast to males, adult human female gonads do not preserve germline type stem cells. This study expands our previous observations on the formation of germ cells in adult human ovaries. Differentiation of primitive granulosa and germ cells from the bipotent mesenchymal cell precursors of TA in adult human ovaries represents a most sophisticated adaptive mechanism created during the evolution of female reproduction. Our data indicate that the pool of primary follicles in adult human ovaries does not represent a static but a dynamic population of differentiating and regressing structures. An essential mission of such follicular turnover might be elimination of spontaneous or environmentally induced genetic alterations of oocytes in resting primary follicles.
Oocyte generation in adult mouse ovaries by putative germ cells (PGCs) in bone marrow and peripheral blood has recently been proposed. It, however, remains unclear whether in laboratory rodents the PGCs reside in BM or the BM cells stimulate oogenesis from ovarian stem cells. We utilized immunoperoxidase staining to localize PGCs, oocytes, and BM derived cells in ovaries of adult (age 45-60 days) control and neonatally estrogenized rat females. In controls, BM derived cells accompanied emergence of PGCs from the ovarian surface epithelium (OSE) cells. The PGCs divided symmetrically, separated, and formed primordial follicles. A proportion (50%) of adult neonatally estrogenized rats lacked OSE. They exhibited occurrence of numerous BM derived cells and appearance of PGC precursors in the medulla. In juxtaposed deep ovarian cortex the emerging PGCs exhibited distinct pseudopodia and apparently migrated toward the mid cortex, where numerous primordial follicles were found. These observations indicate that BM derived cells accompany origination of PGCs from the OSE stem cells in normal adult rat females and from the medullary precursors in the adult neonatally estrogenized rats lacking OSE. An alternative origin of PGCs from the medullary region may explain why ovaries with destructed OSE are still capable of forming new primordial follicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.