The cytokine interleukin-1 (IL-1) is a major inflammatory hormone which activates a broad range of genes during inflammation. The signaling mechanisms triggered by IL-1 include activation of several distinct protein kinase systems. The stress-activated protein kinase (SAPK), also termed Jun N-terminal kinase (JNK), is activated particularly strongly by the cytokine. In an attempt to delineate its role in activation of gene expression by IL-1, we inhibited the IL-1-induced SAPK/JNK activity by stable overexpression of either a catalytically inactive mutant of SAPK (SAPK(K-R)) or antisense RNA to SAPK in human epidermal carcinoma cells. A detailed analysis of signal transduction in those cells showed that activation of neither NFB nor p38 mitogen-activated protein kinase was affected, suggesting that we achieved specific blockade of the SAPK/JNK. In untransfected and vector-transfected KB cells, IL-1 induced a strong increase in expression of IL-6 and IL-8 mRNA, along with the synthesis of high amounts of the proteins. In two KB cell clones stably overexpressing the mutant SAPK(K-R), and three clones stably overexpressing antisense RNA to SAPK, expression of IL-6 and IL-8 in response to IL-1 was strongly reduced at both the mRNA and protein level. These data indicate that the SAPK/JNK pathway provides an indispensable signal for IL-1-induced expression of IL-6 and IL-8.
Time-distinct gene induction of IL-1beta, TNFalpha and IL-1beta is involved in UV-induced immune reactions, but no considerable changes were found for IL-10r or IL-7.
The 90-kDa heat shock protein (Hsp90) is the most abundant molecular chaperone of eukaryotic cells. Its chaperone function in folding nascent proteins seems to be restricted to a subset of proteins including major components of signal transduction pathways (eg, nuclear hormone receptors, transcription factors, and protein kinases). Improper function of these proteins can be induced by selective disruption of their complexes with Hsp90 using the benzoquinonoid ansamycin geldanamycin. In this study, we demonstrate that geldanamycin treatment blocks interleukin (IL)-2 secretion, IL-2 receptor expression, and proliferation of stimulated T-lymphocytes. Moreover, geldanamycin decreases the amount and phosphorylation of Lck and Raf-1 kinases and prevents activation of the extracellular signal regulated kinase (ERK)-2 kinase. Geldanamycin also disrupts the T-cell receptor-mediated activation of nuclear factor of activated T-cells (NF-AT). Treatment with geldanamycin, however, does not affect the activation of lysophosphatide acyltransferase, which is a plasma membrane enzyme coupled to the T-cell receptor after T-cell stimulation. Through demonstrating the selective inhibition of kinase-related T-lymphocyte responses by geldanamycin, our results emphasize the substantial role of Hsp90-kinase complexes in T-cell activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.