The aim of our study was to develop a novel method for the preparation of polymeric core-shell nanoparticles loaded with various actives for biomedical applications. Poly(caprolactone) (PCL), poly(lactic acid) (PLA) and poly(lactide-co-glycolide) (PLGA) nanoparticles were prepared using the spontaneous emulsification solvent evaporation (SESE) method. The model active substance, Coumarin-6, was encapsulated into formed polymeric nanoparticles, then they were modified/functionalized by multilayer shells’ formation. Three types of multilayered shells were formed: two types of polyelectrolyte shell composed of biocompatible and biodegradable polyelectrolytes poly-L-lysine hydrobromide (PLL), fluorescently-labeled poly-L-lysine (PLL-ROD), poly-L-glutamic acid sodium salt (PGA) and pegylated-PGA (PGA-g-PEG), and hybrid shell composed of PLL, PGA, and SPIONs (superparamagnetic iron oxide nanoparticles) were used. Multilayer shells were constructed by the saturation technique of the layer-by-layer (LbL) method. Properties of our polymeric core-shell nanoparticle were optimized for bioimaging, passive and magnetic targeting.
BackgroundThe functionalization of a nanoparticle surface with PEG (polyethylene glycol) is an approach most often used for extending nanomaterial circulation time, enhancing its delivery and retention in the target tissues, and decreasing systemic toxicity of nanocarriers and their cargos. However, because PEGylated nanomedicines were reported to induce immune response including production of anti-PEG antibodies, activation of the complement system as well as hypersensitivity reactions, hydrophilic polymers other than PEG are gaining interest as its replacement in nanomaterial functionalization. Here, we present the results of in vivo evaluation of polyelectrolyte nanocapsules with biodegradable, polyelectrolyte multilayer shells consisting of poly-l-lysine (PLL) and poly-l-glutamic (PGA) acid as a potential drug delivery system. We compared the effects of nanocapsules functionalized with two different “stealth” polymers as the external layer of tested nanocapsules was composed of PGA (PGA-terminated nanocapsules, NC-PGA) or the copolymer of poly-l-lysine and polyethylene glycol (PEG-terminated nanocapsules, NC-PEG).MethodsNanocapsules pharmacokinetics, biodistribution and routes of eliminations were analysed postmortem by fluorescence intensity measurement. Toxicity of intravenously injected nanocapsules was evaluated with analyses of blood morphology and biochemistry and by histological tissue analysis. DNA integrity was determined by comet assay, cytokine profiling was performed using flow cytometer and detection of antibodies specific to PEG was performed by ELISA assay.ResultsWe found that NC-PGA and NC-PEG had similar pharmacokinetic and biodistribution profiles and both were eliminated by hepatobiliary and renal clearance. Biochemical and histopathological evaluation of long-term toxicity performed after a single as well as repeated intravenous injections of nanomaterials demonstrated that neither NC-PGA nor NC-PEG had any acute or chronic hemato-, hepato- or nephrotoxic effects. In contrast to NC-PGA, repeated administration of NC-PEG resulted in prolonged increased serum levels of a number of cytokines.ConclusionOur results indicate that NC-PEG may cause undesirable activation of the immune system. Therefore, PGA compares favorably with PEG in equipping nanomaterials with stealth properties. Our research points to the importance of a thorough assessment of the potential influence of nanomaterials on the immune system.
The
aim of our study was to develop a novel method for nanocarriers’
preparation as a fluorine magnetic resonance imaging (
19
F MRI)-detectable drug delivery system. The novelty of the proposed
approach is based on the application of fluorinated polyelectrolyte
Nafion as a contrast agent since typical MRI contrast agents are based
on paramagnetic gadolinium or ferro/superparamagnetic iron oxide compounds.
An advantage of using an
19
F-based tracer comes from the
fact that the
19
F image is detected at a different resonance
frequency than the
1
H image. In addition, the close to
zero natural concentration of
19
F nuclei in the human body
makes fluorine atoms a promising MRI marker without any natural background
signal. That creates the opportunity to localize and identify only
exogenous fluorinated compounds with 100% specificity. The nanocarriers
were formed by the deposition of polyelectrolytes on nanoemulsion
droplets via the layer-by-layer technique with the saturation approach.
The polyelectrolyte multilayer shell was composed of Nafion, the fluorinated
ionic polymer used for labeling by
19
F nuclei, and poly-
l
-lysine (PLL). The surface of such prepared nanocarriers was
further pegylated by adsorption of pegylated polyanion, poly-
l
-glutamic acid (PGA). The
19
F MRI-detectable hydrophobic
nanocarriers with an average size of 170 nm and a sufficient signal-to-noise
ratio have been developed and optimized to be used for passive tumor
targeting and drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.