The blood-brain barrier (BBB) is constituted by a specialized vascular endothelium that interacts directly with astrocytes, neurons and pericytes. It protects the brain from the molecules of the systemic circulation but it has to be overcome for the proper treatment of brain cancer, psychiatric disorders or neurodegenerative diseases, which are dramatically increasing as the population ages. In the present work we have revised the current knowledge on the cellular structure of the BBB and the different procedures utilized currently and those proposed to cross it. Chemical modifications of the drugs, such as increasing their lipophilicity, turn them more prone to be internalized in the brain. Other mechanisms are the use of molecular tools to bind the drugs such as small immunoglobulins, liposomes or nanoparticles that will act as Trojan Horses favoring the drug delivery in brain. This fusion of the classical pharmacology with nanotechnology has opened a wide field to many different approaches with promising results to hypothesize that BBB will not be a major problem for the new generation of neuroactive drugs. The present review provides an overview of all state-of-the-art of the BBB structure and function, as well as of the classic strategies and these appeared in recent years to deliver drugs into the brain for the treatment of Central Nervous System (CNS) diseases.
We examined the effect of melatonin on pro-survival processes in three groups of mice. Untreated senescence-accelerated mice (SAMP8), melatonin-treated SAMP8 and untreated senescence-accelerated resistant mice (SAMR1) of 10 months old were studied. Melatonin (10 mg/kg) or vehicle (ethanol at 0.066%) was supplied in the drinking water from the end of the first month until the end of the ninth month of life. Differences in the Akt/Erk1-2 pathway and downstream targets were examined and no significant changes were observed, except for beta-catenin. However, sirtuin 1 expression was significantly lower in SAMP8 than in SAMR1. In addition, acetylated p53 and NFkappaB expression were lower in SAMP8 than in SAMR1. These changes were prevented by melatonin. Moreover, the concentration/expression of alpha-secretase was lower and that of amyloid beta aggregates (Abeta) was higher in untreated SAMP8 than in SAMR1. Likewise, the levels of Bid were higher, whereas Bcl-2(XL) levels were lower in SAMP8 than in SAMR1. Melatonin reduced all these changes. We conclude that melatonin improves pro-survival signals and reduces pro-death signals in age-related impairments of neural processes.
Sirtuin 1 is a member of the sirtuin family of protein deacetylases, which have attracted considerable attention as mediators of lifespan extension in several model organisms. Induction of sirtuin 1 expression also attenuates neuronal degeneration and death in animal models of Alzheimer's disease and Huntington's disease. In this study, an in vitro model of neuronal aging was used to test in several ways whether melatonin acts as a sirtuin 1 inducer and if this effect could be neuroprotective. It is shown that melatonin is able to increase the level of this deacetylase in young primary neurons, as well as in aged neurons. We also observed an increase in the deacetylation of several substrates of sirtuin 1, such as p53, PGC-1alpha, FoxO1, ADAM10 and NFkappaB. In addition, there was a reduction in its nuclear translocation and, subsequently, an improvement in transcriptional activity. Sirtinol, a sirtuin 1 inhibitor, was used to correlate these effects with sirtuin. It is shown that sirtinol reduces sirtuin 1 expression and impairs the beneficial action of melatonin on cell viability and apoptosis prevention. Moreover, some of the sirtuin 1 substrates studied also reversed the melatonin effect when sirtinol is added to the cells, mainly p53. Globally, these results add weight to the findings of previous reports, indicating a new role for melatonin in improving cell function gated to an increased neuroprotective role for the sirtuin 1 pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.