Photostability of organic photovoltaic devices represents a key requirement for the commercialization of this technology. In this field, ZnO is one of the most attractive materials employed as an electron transport layer, and the investigation of its photostability is of particular interest. Indeed, oxygen is known to chemisorb on ZnO and can be released upon UV illumination. Therefore, a deep analysis of the UV/oxygen effects on working devices is relevant for the industrial production where the coating processes take place in air and oxygen/ZnO contact cannot be avoided. Here we investigate the light-soaking stability of inverted organic solar cells in which four different solution-processed ZnO-based nanoparticles were used as electron transport layers: (i) pristine ZnO, (ii) 0.03 at %, (iii) 0.37 at %, and (iv) 0.8 at % aluminum-doped AZO nanoparticles. The degradation of solar cells under prolonged illumination (40 h under 1 sun), in which the ZnO/AZO layers were processed in air or inert atmosphere, is studied. We demonstrate that the presence of oxygen during the ZnO/AZO processing is crucial for the photostability of the resulting solar cell. While devices based on undoped ZnO were particularly affected by degradation, we found that using AZO nanoparticles the losses in performance, due to the presence of oxygen, were partially or totally prevented depending on the Al doping level.
Monitoring of bioelectric signals in peripheral sympathetic nerves of small animal models is crucial to gain understanding of how the autonomic nervous system controls specific body functions related to disease states. Advances in minimally-invasive electrodes for such recordings in chronic conditions rely on electrode materials that show low-impedance ionic/electronic interfaces and elastic mechanical properties compliant with the soft and fragile nerve strands. Here we report a highly stretchable low-impedance electrode realized by microcracked gold films as metallic conductors covered with stretchable conducting polymer composite to facilitate ion-to-electron exchange. The conducting polymer composite based on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) obtains its adhesive, low-impedance properties by controlling thickness, plasticizer content and deposition conditions. Atomic Force Microscopy measurements under strain show that the optimized conducting polymer coating is compliant with the micro-crack mechanics of the underlying Au-layer, necessary to absorb the tensile deformation when the electrodes are stretched. We demonstrate functionality of the stretchable electrodes by performing high quality recordings of renal sympathetic nerve activity under chronic conditions in rats.
Organic electrochemical transistors (OECTs) are bioelectronic devices able to bridge electronic and biological domains with especially high amplification and configurational versatility and thus stand out as promising platforms for healthcare applications and portable sensing technologies. Here, we have optimized the synthesis of two pH-sensitive composites of PEDOT (poly(3,4-ethylenedioxythiophene)) doped with pH dyes (BTB and MO, i.e., Bromothymol Blue and Methyl Orange, respectively), showing their ability to successfully convert the pH into an electrical signal. The PEDOT:BTB composite, which exhibited the best performance, was used as the gate electrode to develop an OECT sensor for pH monitoring that can reliably operate in a two-fold transduction mode with super-Nernstian sensitivity. When the OECT transconductance is employed as analytical signal, a sensitivity of 93 ± 8 mV pH unit is achieved by successive sampling in aqueous electrolytes. When the detection is carried out by dynamically changing the pH of the same medium, the offset gate voltage of the OECT shifts by (1.1 ± 0.3) × 10 mV pH unit. As a further step, the optimized configuration was realized on a PET substrate, and the performance of the resulting flexible OECT was assessed in artificial sweat within a medically relevant pH range.
The rapid evolution of wearable technologies is giving rise to a strong push for textile chemical sensors design targeting the real-time collection of vital parameters for improved healthcare. Among the most promising applications, monitoring of nonhealing wounds is a scarcely explored medical field that still lacks quantitative tools for the management of the healing process. In this work, a smart bandage is developed for the real-time monitoring of wound pH, which has been reported to correlate with the healing stages, thus potentially giving direct access to the wound status without disturbing the wound bed. The fully textile device is realized by integrating a sensing layer, including the two-terminal pH sensor made of a semiconducting polymer and iridium oxide particles, and an absorbent layer ensuring the delivery of a continuous wound exudate flow across the sensor area. The two-terminal sensor exhibits a reversible response with a sensitivity of (59 ± 4) μA pH –1 in the medically relevant pH range for wound monitoring (pH 6–9), and its performance is not substantially affected either by the presence of the most common chemical interferents or by temperature gradients from 22 to 40 °C. Thanks to the robust sensing mechanism based on potentiometric transduction and the simple device geometry, the fully assembled smart bandage was successfully validated in flow analysis using synthetic wound exudate.
In the new era of Internet of Things, there is a great demand for the development of novel chemical wearable sensors, in particular, for personalized medical diagnostics with point‐of‐care devices. This paper provides an overview on the recent developments in this field, focusing on fully textile chemical sensors, i.e., sensors directly incorporated into a garment/fabric/fiber. The recent results are summarized by grouping them in three broad categories according to their working principle: (i) electrochemical sensors; (ii) transistor‐based sensors; and (iii) resistance‐based sensors. Wearable chemical sensors can be used to detect external dangerous vapor/agents, or to control and monitor the concentration of specific compounds in biofluids for safety and healthcare applications. One of the main issues of such applications is sensor operation in a complex medium containing many interfering compounds. To this end, recent novel approaches to enhance the selectivity of fully textile wearable sensors are reviewed: enzyme‐based approach, selective membrane, and a potentiodynamic method. Finally, a critical overview is given about the major open issues that have to be overcome in order to reach a high technology readiness level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.