Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (∼26%–27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ∼2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels (p<5×10−8) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with 1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common genetic variants influencing CT–assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting genetic heterogeneity in the pathways influencing these traits.
Objective
Prior studies investigating the association between APOE alleles ε2 / ε4 and risk of Intracerebral Hemorrhage (ICH) have been inconsistent, limited to small sample sizes and did not account for confounding by population stratification or determine which genetic risk model was best applied.
Methods
We performed a large-scale genetic association study of 2,189 ICH cases and 4,041 controls from seven cohorts, which were analyzed using additive models for ε2 and ε4. Results were subsequently meta-analyzed using a random effects model. A proportion of the individuals (322 cases and 357 controls) had available genome-wide data to adjust for population stratification.
Results
ε2 and ε4 were associated with lobar ICH at genome-wide significance levels (Odds Ratio (OR) = 1.82, 95% Confidence Interval (CI) 1.50 – 2.23, p = 6.6 × 10−10 and OR = 2.20, 95%CI 1.85 – 2.63, p = 2.4 × 10−11 respectively). Restriction of analysis to definite / probable CAA ICH uncovered a stronger effect. ε4 was also associated with increased risk for deep ICH (OR = 1.21, 95% CI 1.08 – 1.36, p = 2.6 × 10−4). Risk prediction evaluation identified the additive model as best for describing the effect of APOE genotypes.
Interpretation
APOE ε2 and ε4 are independent risk factors for lobar ICH, consistent with their known associations with amyloid biology. In addition, we present preliminary findings on a novel association between APOE ε4 and deep ICH. Finally, we demonstrate that an additive model for these APOE variants is superior to other forms of genetic risk modeling previously applied.
The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function.
Not only CYP2C19 loss-of-function but also gain-of-function alleles should be considered to define the pharmacogenetic response to clopidogrel. The results question the relevance of the CYP2C19 loss-of-function alleles in the prediction of major cardiovascular events beyond stent thrombosis in coronary patients treated with clopidogrel. The gain-of-function variant is associated with a lower risk of cardiovascular events but a higher risk of bleeding.
Our results provide the first demonstration, to our knowledge, of a risk-conferring genetic modifier in a large LQTS cohort. Subject to confirmation in additional cohorts, we suggest that the NOS1AP tag SNP genotype may provide an additional clinical dimension, which helps assess risk and choice of therapeutic strategies in LQTS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.