In a demand context of mass customization, shifting towards the mass personalization of products, assembly operations face the trade-off between highly productive automated systems and flexible manual operators. Novel digital technologies—conceptualized as Industry 4.0—suggest the possibility of simultaneously achieving superior productivity and flexibility. This article aims to address how Industry 4.0 technologies could improve the productivity, flexibility and quality of assembly operations. A systematic literature review was carried out, including 234 peer-reviewed articles from 2010–2020. As a result, the analysis was structured addressing four sets of research questions regarding (1) assembly for mass customization; (2) Industry 4.0 and performance evaluation; (3) Lean production as a starting point for smart factories, and (4) the implications of Industry 4.0 for people in assembly operations. It was found that mass customization brings great complexity that needs to be addressed at different levels from a holistic point of view; that Industry 4.0 offers powerful tools to achieve superior productivity and flexibility in assembly; that Lean is a great starting point for implementing such changes; and that people need to be considered central to Assembly 4.0. Developing methodologies for implementing Industry 4.0 to achieve specific business goals remains an open research topic.
No abstract
Military logistics is a complex process where response times, demand uncertainty, wide variety of material references, and cost-effectiveness are decisive for combat capability. The demanding flexibility can only be achieved by improving supply chain management (SCM) to minimize lead times. To cope with these requirements, lean thinking can be extended to military organizations. This research justifies and proposes the use of lean methodologies to improve logistics processes with the case study of a military unit. In particular, the article presents the results obtained using value stream mapping (VSM) and value stream design (VSD) tools to improve the order processing lead time of spare items. The procedure starts with an order generation from a military unit that requests the material and ends before transportation to the final destination. The whole project was structured, considering the define-measure-analyze-improve-control (DMAIC) problem-solving methodology. The results show that the future state map might increase added-value activities from 44% to 70%. After implementation, it was demonstrated that the methodology applied reduced the lead-time average and deviation up to 69.6% and 61.9%, respectively.Appl. Sci. 2020, 10, 106 2 of 17 in the supply chain reliability by synchronizing each element internally and externally, forecasting the demand and managing inventories and assets efficiently.To minimize response times and to assure the required flexibility avoided wastes, the lean philosophy can be extended to supply chain management in military organizations. For example, the United States Department of Defense (DoD) has been working intensively together with service providers and supporting contractors to introduce and apply lean principles into their organizations to optimize internal lead times [7]. The origin of lean philosophy is generally attributed to the practices developed from the TPS or Toyota Production System [8,9], pioneered by Taiichi Ohno [10] and Shigeo Shingo [11]. Their lean principles related to philosophy, processes, people, partners, and problem-solving allow organizations the implementation of lean thinking at different levels. Moreover, TPS has influenced not only manufacturing concepts but also supply chain management ones [12][13][14]. The concept of lean supply is described in [15,16] as an operating attitude that needs to be changed in relation to suppliers so that the effect of associated costs to non-perfect processes will not be limited to the location of the execution. This approach targets long-term customer satisfaction. Thus, supply chain optimization is possible according to the three main TPS goals: best quality, lowest cost, and shortest lead-time, which are achieved by continuous improvement and increasing operations' added value.This work evaluates the use of lean methodologies and their application to military logistics functions, focusing on supply chain management processes for spare parts. We present a case study to improve military material order processing pr...
Halbach linear motors are selected as actuators in positioning stages because they present numerous advantages in precision engineering. These motors generate a horizontal and a vertical force. Whereas the horizontal force is used to perform the movement, the vertical force can be leveraged for the levitation of the moving part of the stage. This paper proposes a vector control strategy that enables the positioning of the motor while regulating the generated vertical force. In contrast to other research projects, this work implements the control strategy in a commercial control hardware. The use of commercial hardware facilitates the applicability and replication of the developed control strategy. The selected hardware is a generic Digital Motor Control Kit of Texas Instruments. The hardware implementation of the control strategy is analysed in detail in order to understand and optimize the control system. The developed control is first validated by simulation, where the error contributors are included. Then, an experimental validation is carried out. The results demonstrate that the control strategy enables the positioning of the motor along its complete operating range and the regulation of the vertical force when the motor is static, as well as while it is moving to a target position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.