Microbiological drinking water safety is traditionally monitored mainly by bacterial parameters that indicate faecal contamination. These parameters correlate with gastro-intestinal illness, despite the fact that viral agents, resulting from faecal contamination, are usually the cause. This leaves behind microbes that can cause illness other than gastro-intestinal and several emerging pathogens, disregarding non-endemic microbial contaminants and those with recent pathogenic activity reported. This white paper focuses on one group of contaminants known to cause allergies, opportunistic infections and intoxications: Fungi. It presents a review on their occurrence, ecology and physiology. Additionally, factors contributing to their presence in water distribution systems, as well as their effect on water quality are discussed. Presence of opportunistic and pathogenic fungi in drinking water can pose a health risk to consumers due to daily contact with water, via several exposure points, such as drinking and showering. The clinical relevance and influence on human health of the most common fungal contaminants in drinking water is discussed. Our goal with this paper is to place fungal contaminants on the roadmap of evidence based and emerging threats for drinking water quality safety regulations.
Integrated river basin management planning to mitigate the impacts of economic, demographic and climate change is an important issue for the future protection of water resources. Identifying sources of microbial contamination via the emerging science of Microbial Source Tracking (MST) plays a key role in risk assessment and the design of remediation strategies. Following an 18-month surveillance program within the EU-FP7-funded VIROCLIME project, specific MST tools were used to assess human markers such as adenoviruses (HAdV) and JC polyomaviruses (JCPyV) and porcine and bovine markers such as porcine adenoviruses (PAdV) and bovine polyomaviruses (BPyV) via quantification with real-time PCR to analyze surface water collected from five sites within different climatic zones: the Negro River (Brazil), Glafkos River (Greece), Tisza River (Hungary), Llobregat River (Spain) and Umeälven River (Sweden). The utility of the viral MST tools and the prevalence and abundance of specific human and animal viruses in the five river catchments and adjacent seawater, which is impacted by riverine contributions from the upstream catchments, were examined. In areas where no sanitation systems have been implemented, sewage can directly enter surface waters, and river water exhibited high viral loads; HAdV and JCPyV could be detected at mean concentrations of 10(5) and 10(4) Genome Copies/Liter (GC/L), respectively. In general, river water samples upstream of urban discharges presented lower human viral loads than downstream sampling sites, and those differences appeared to increase with urban populations but decrease in response to high river flow, as the elevated river water volume dilutes microbial loads. During dry seasons, river water flow decreases dramatically, and secondary effluents can represent the bulk of the riverine discharge. We also observed that ice cover that formed over the river during the winter in the studied areas in North Europe could preserve viral stability due to the low temperatures and/or the lack of solar inactivation. Porcine and bovine markers were detected where intensive livestock and agricultural activities were present; mean concentration values of 10(3) GC/L indicated that farms were sometimes unexpected and important sources of fecal contamination in water. During spring and summer, when livestock is outdoors and river flows are low, animal pollution increases due to diffuse contamination and direct voiding of feces onto the catchment surface. The field studies described here demonstrate the dynamics of fecal contamination in all catchments studied, and the data obtained is currently being used to develop dissemination models of fecal contamination in water with respect to future climate change scenarios. The results concerning human and animal targets presented in this study demonstrate the specificity and applicability of the viral quantitative parameters developed to widely divergent geographical areas and their high interest as new indicators of human and animal fecal contamination in water a...
BACKGROUND: Trihalomethanes (THMs) are widespread disinfection by-products (DBPs) in drinking water, and long-term exposure has been consistently associated with increased bladder cancer risk. OBJECTIVE: We assessed THM levels in drinking water in the European Union as a marker of DBP exposure and estimated the attributable burden of bladder cancer. METHODS: We collected recent annual mean THM levels in municipal drinking water in 28 European countries (EU28) from routine monitoring records. We estimated a linear exposure-response function for average residential THM levels and bladder cancer by pooling data from studies included in the largest international pooled analysis published to date in order to estimate odds ratios (ORs) for bladder cancer associated with the mean THM level in each country (relative to no exposure), population-attributable fraction (PAF), and number of attributable bladder cancer cases in different scenarios using incidence rates and population from the Global Burden of Disease study of 2016. RESULTS: We obtained 2005-2018 THM data from EU26, covering 75% of the population. Data coverage and accuracy were heterogeneous among countries. The estimated population-weighted mean THM level was 11:7 lg=L [standard deviation (SD) of 11.2]. The estimated bladder cancer PAF was 4.9% [95% confidence interval (CI): 2.5, 7.1] overall (range: 0-23%), accounting for 6,561 (95% CI: 3,389, 9,537) bladder cancer cases per year. Denmark and the Netherlands had the lowest PAF (0.0% each), while Cyprus (23.2%), Malta (17.9%), and Ireland (17.2%) had the highest among EU26. In the scenario where no country would exceed the current EU mean, 2,868 (95% CI: 1,522, 4,060; 43%) annual attributable bladder cancer cases could potentially be avoided. DISCUSSION: Efforts have been made to reduce THM levels in the European Union. However, assuming a causal association, current levels in certain countries still could lead to a considerable burden of bladder cancer that could potentially be avoided by optimizing water treatment, disinfection, and distribution practices, among other possible measures.
Wastewater based epidemiology is a potential early warning tool for the detection of COVID-19 outbreak. Sewage surveillance for SARS-CoV-2 RNA was introduced in Hungary after the successful containment of the first wave of the pandemic to forecast the resurge of infections. Three wastewater treatment plants servicing the entire population (1.8 million) of the capital, Budapest were sampled weekly. 24 h composite ( n = 44) and grab samples ( n = 21) were concentrated by an in-house flat sheet membrane ultrafiltration method. The efficiency and reproducibility of the method was comparable to those previously published. SARS-CoV-2 RNA was quantified using RT-qPCR of the N gene. The first positive signal in sewage was detected 2 weeks before the rise in case numbers. Viral concentration and volume-adjusted viral load correlated to the weekly new cases from the same week and the rolling 7-day average of active cases in the subsequent week. The correlation was more pronounced in the ascending phase of the outbreak, data was divergent once case numbers plateaued. Wastewater surveillance was found to be effective in predicting the second wave of the outbreak in Hungary. Data indicated that even relatively low frequency (weekly) sampling is useful and at the same time, cost effective tool in outbreak detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.