Most cancer patients exhibit autonomic dysfunction with attenuated heart rate variability (HRV) levels compared to healthy controls. This research aimed to create and evaluate a machine learning (ML) model enabling discrimination between cancer patients and healthy controls based on 5-min-ECG recordings. We selected 12 HRV features based on previous research and compared the results between cancer patients and healthy individuals using Wilcoxon sum-rank test. Recursive Feature Elimination (RFE) identified the top five features, averaged over 5 min and employed them as input to three different ML. Next, we created an ensemble model based on a stacking method that aggregated the predictions from all three base classifiers. All HRV features were significantly different between the two groups. SDNN, RMSSD, pNN50%, HRV triangular index, and SD1 were selected by RFE and used as an input to three different ML. All three base-classifiers performed above chance level, RF being the most efficient with a testing accuracy of 83%. The ensemble model showed a classification accuracy of 86% and an AUC of 0.95. The results obtained by ML algorithms suggest HRV parameters could be a reliable input for differentiating between cancer patients and healthy controls. Results should be interpreted in light of some limitations that call for replication studies with larger sample sizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.