A variety of environmental agents has been found to influence the development of autoimmune diseases; in particular, the studies investigating the potential association of systemic autoimmune rheumatic diseases with environmental micro and nano-particulate matter are very few and contradictory. In this study, the role of diesel exhaust particles (DEPs), one of the most important components of environment particulate matter, emitted from Euro 4 and Euro 5 engines in altering the Normal Human Bronchial Epithelial (NHBE) cell biological activity was evaluated. NHBE cells were exposed in vitro to Euro 4 and Euro 5 particle carbon core, sampled upstream of the typical emission after-treatment systems (diesel oxidation catalyst and diesel particulate filter), whose surfaces have been washed from well-assessed harmful species, as polycyclic aromatic hydrocarbons (PAHs) to: (1) investigate their specific capacity to affect cell viability (flow cytometry); (2) stimulate the production of the pro-inflammatory cytokine IL-18 (Enzyme-Linked ImmunoSorbent Assay -ELISA-); (3) verify their specific ability to induce autophagy and elicit protein citrullination and peptidyl arginine deiminase (PAD) activity (confocal laser scanning microscopy, immunoprecipitation, Sodium Dodecyl Sulphate-PolyAcrylamide Gel Electrophoresis -SDS-PAGE- and Western blot, ELISA). In this study we demonstrated, for the first time, that both Euro 4 and Euro 5 carbon particles, deprived of PAHs possibly adsorbed on the soot surface, were able to: (1) significantly affect cell viability, inducing autophagy, apoptosis and necrosis; (2) stimulate the release of the pro-inflammatory cytokine IL-18; (3) elicit protein citrullination and PAD activity in NHBE cells. In particular, Euro 5 DEPs seem to have a more marked effect with respect to Euro 4 DEPs.
Autophagy is a lysosome-mediated catabolic process that allows cells to degrade unwanted cytoplasmic constituents and to recycle nutrients. Autophagy is also involved in innate and adaptive immune responses, playing a key role in interactions against microbes, in antigen processing for major histocompatibility complex (MHC) presentation, and in lymphocyte development, survival, and proliferation. Over recent years, perturbations in autophagy have been implicated in a number of diseases, including autoimmunity. Systemic lupus erythematosus (SLE) is a multifactorial disease characterized by autoimmune responses against self-antigens generated by dying cells. Genome-wide association studies have linked several single-nucleotide polymorphisms (SNPs) in the autophagy-related gene Atg5 to SLE susceptibility. Loss of Atg5-dependent effects, including clearance of dying cells and cell antigen presentation, might contribute to the autoimmunity and inflammation associated with SLE. Moreover, activation of the mammalian target of rapamycin (mTOR), a key player in the autophagy regulation, has recently been demonstrated in SLE, confirming an altered autophagy pathway in this disease. In the present review, we summarize the autophagy mechanisms, their molecular regulation, and their relevance in immunity and autoimmunity. The potential of targeting autophagy pathway in SLE, by developing innovative therapeutic approaches, has finally been discussed.
Autophagy is a degradation mechanism by which cells recycle cytoplasmic components to generate energy. By influencing lymphocyte development, survival, and proliferation, autophagy regulates the immune responses against self and non-self antigens. Deregulation of autophagic pathway has recently been implicated in the pathogenesis of several autoimmune diseases, including rheumatoid arthritis (RA). Indeed, autophagy seems to be involved in the generation of citrullinated peptides, and also in apoptosis resistance in RA. In this review, we summarize the current knowledge on the role of autophagy in RA and discuss the possibility of a clinical application of autophagy modulation in this disease.
We aimed at investigating whether the frequency and function of T helper 17 (Th17) and regulatory T cells (Treg) are affected by a restriction of dietary sodium intake in patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We enrolled RA and SLE patients not receiving drugs known to increase urinary sodium excretion. Patients underwent a dietary regimen starting with a restricted daily sodium intake followed by a normal-sodium daily intake. The timepoints were identified at baseline (T0), after 3 weeks of low-sodium dietary regimen (T3), after 2 weeks of normal-sodium dietary regimen (T5). On these visits, we measured the 24-hour urinary sodium excretion, the frequency and function of Th17 and Treg cells in the peripheral blood, the serum levels of cytokines. Analysis of urinary sodium excretion confirmed adherence to the dietary regimen. In RA patients, a trend toward a reduction in the frequencies of Th17 cells over the low-sodium dietary regimen followed by an increase at T5 was observed, while Treg cells exhibited the opposite trend. SLE patients showed a progressive reduction in the percentage of Th17 cells that reached a significance at T5 compared to T0 (p = 0.01) and an increase in the percentage of Treg cells following the low-sodium dietary regimen at both T1 and T3 compared to T0 (p = 0.04 and p = 0.02, respectively). No significant apoptosis or proliferation modulation was found. In RA patients, we found a reduction at T5 compared to T0 in serum levels of both TGFβ (p = 0.0016) and IL-9 (p = 0.0007); serum IL-9 levels were also reduced in SLE patients at T5 with respect to T0 (p = 0.03). This is the first study investigating the effects of dietary sodium intake on adaptive immunity. Based on the results, we hypothesize that a restricted sodium dietary intake may dampen the inflammatory response in RA and SLE patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.