Use of antiresonant structures is a proven, efficient method of improving lateral mode selectivity in VCSELs. In this paper, we analyze the impact of a low-refractive antiresonant oxide island buried in a top VCSEL mirror on the lasing conditions of lateral modes of different orders. By performing comprehensive thermal, electrical, and optical numerical analysis of the VCSEL device, we show the impact of the size and location of the oxide island on the current-crowding effect and compute threshold currents for various lateral modes. If the island is placed close to the cavity, the threshold shows strong oscillations, which for moderate island distances can be tuned to increase the side mode discrimination. We are therefore able to pinpoint the most important factors influencing mode discrimination and to identify oxide island parameters capable of providing single-lateral-mode emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.