It is well established that mast cells (MCs) occur within the CNS of many species. Furthermore, their numbers can increase rapidly in adults in response to altered physiological conditions. In this study we found that early postpartum rats had significantly more mast cells in the thalamus than virgin controls. Evidence from semithin sections from these females suggested that mast cells were transiting across the medium-sized blood vessels. We hypothesized that the increases in mast cell number were caused by their migration into the neural parenchyma. To this end, we purified rat peritoneal mast cells, labeled them with the vital dyes PKH26 or CellTracker Green, and injected them into host animals. One hour after injection, dye-filled cells, containing either histamine or serotonin (mediators stored in mast cells), were located close to thalamic blood vessels. Injected cells represented approximately 2-20% of the total mast cell population in this brain region. Scanning confocal microscopy confirmed that the biogenic amine and the vital dye occurred in the same cell. To determine whether the donor mast cells were within the blood-brain barrier, we studied the localization of dye-marked donor cells and either Factor VIII, a component of endothelial basal laminae, or glial fibrillary acidic protein, the intermediate filament found in astrocytes. Serial section reconstructions of confocal images demonstrated that the mast cells were deep to the basal lamina, in nests of glial processes. This is the first demonstration that mast cells can rapidly penetrate brain blood vessels, and this may account for the rapid increases in mast cell populations after physiological manipulations.
Release of acetylcholine (ACh) in the hippocampus (HC) occurs during exploration, arousal, and learning. Although the medial septum-diagonal band of Broca (MS-DBB) is the major extrinsic source of cholinergic input to the HC, cholinergic neurons intrinsic to the HC also exist but remain poorly understood. Here, ChAT-tauGFP and ChAT-CRE/Rosa26YFP (ChAT-Rosa) mice were examined in HC. The HC of ChAT-tauGFP mice was densely innervated with GFP-positive axons, often accompanied by large GFP-positive structures, some of which were Neurotrace/DAPI-negative and likely represent large axon terminals. In the HC of ChAT-Rosa mice, ChAT-YFP cells were Neurotrace-positive and more abundant in CA3 and dentate gyrus than CA1 with partial overlap with calretinin/VIP. Moreover, an anti-ChAT antibody consistently showed ChAT immunoreactivity in ChAT-YFP cells from MS-DBB but rarely from HC. Furthermore, ChAT-YFP cells from CA1 stratum radiatum/stratum lacunosum moleculare (SR/SLM) exhibited a stuttering firing phenotype but a delayed firing phenotype in stratum pyramidale (SP) of CA3. Input resistance and capacitance were also different between CA1 SR/LM and CA3 SP ChAT-YFP cells. Bath application of ACh increased firing frequency in all ChAT-YFP cells; however, cholinergic modulation was larger in CA1 SR/SLM than CA3 SP ChAT-YFP cells. Finally, CA3 SP ChAT-YFP cells exhibited a wider AP half-width and weaker cholinergic modulation than YFP-negative CA3 pyramidal cells. Consistent with CRE expression in a subpopulation of principal cells, optogenetic stimulation evoked glutamatergic postsynaptic currents in CA1 SR/SLM interneurons. In conclusion, the presence of fluorescently labeled hippocampal cells common to both ChAT-tauGFP and ChAT-Rosa mice are in good agreement with previous reports on the existence of cholinergic interneurons, but both transgenic mouse lines exhibited unexpected anatomical features that departed considerably from earlier observations.
Resting and actively degranulating mast cells are found on the brain side of the blood-brain barrier. In the periphery, exocytosis of mast cell granules results in the release of soluble mediators and insoluble granule remnants. These mast cell constituents are found in a variety of nearby cell types, acquired by fusion of granule and cellular membranes or by cellular capture of mast cell granule remnants. These phenomena have not been studied in the brain. In the current work, light and electron microscopic studies of the medial habenula of the dove brain revealed that mast cell-derived material can enter neurons in three ways: by direct fusion of the granule and plasma membranes (mast cell and neuron); by capture of insoluble granule remnants and, potentially, via receptor-mediated endocytosis of gonadotropin-releasing hormone, a soluble mediator derived from the mast cell. These processes result in differential subcellular localization of mast cell material in neurons, including free in the neuronal cytoplasm, membrane-bound in granule-like compartments or in association with small vesicles and the trans-Golgi network. Capture of granule remnants is the most frequently observed form of neuronal acquisition of mast cell products and correlates quantitatively with mast cells undergoing piecemeal degranulation. The present study indicates that mast cell-derived products can enter neurons, a process termed transgranulation, indicating a novel form of brain-immune system communication.
Several studies have described high correlation of salivary and blood lactate level during exercise. Measuring the effectiveness and intensity of training, lactate concentration in blood, and lately in saliva are used.The aim of our study was to evaluate the correlation between the concentration and timing of salivary and blood lactate level in endurance athletes and non-athletes after a maximal treadmill test, and to identify physiological and biochemical factors affecting these lactate levels.Sixteen volunteers (8 athletes and 8 non-athletes) performed maximal intensity (Astrand) treadmill test. Anthropometric characteristics, body composition and physiological parameters (heart rate, RR-variability) were measured in both studied groups. Blood and whole saliva samples were collected before and 1, 4, 8, 12, 15, 20 min after the exercise test. Lactate level changes were monitored in the two groups and two lactate peaks were registered at different timeperiods in athletes. We found significant correlation between several measured parameters (salivary lactate - total body water, salivary lactate - RR-variability, maximal salivary lactate - maximal heart rate during exercise, salivary- and blood lactate -1 min after exercise test). Stronger correlation was noted between salivary lactate and blood lactate in athletes, than in controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.