In this work it proposes a mathematical model for ion channels based on two concepts, the Hodgkin and Huxley's as well as the Law of Mass Action in addition, we consider the kinetics of channels as a dynamic process of Markov`s chain. With the previous premises, a system of differential equations is proposed that when it is solved, all properties of the macroscopic currents are determined. The activation, deactivation, inactivation, and recovery of the inactivation concepts remain as processes that are part of a chemical reaction. With this system of equations, all the experimental protocols used in electrophysiology to characterize macroscopic currents can be modeled. Another advantage is that the model allows, with the same system of equations, to determine the properties of voltage-dependent channels regardless of the type of ion that pass through in the channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.