The main objective was to explore the relationship between the microbiota of human milk and adiposity in Mexican mothers during the first lactation stage. Methods: Seventy lactating women were included. Adiposity by anthropometric measurements and by bioelectric impedance was obtained. The donation of human milk was requested, from which bacterial DNA was extracted and qPCR of the 16S region was performed. The Mann–Whitney U test, Spearman and Pearson correlations, and multiple linear regressions models were also calculated. Results: The median percentage of Bacteroidetes had a direct and significant correlation with normal adiposity, current BMI, waist circumference, and body fat percentage. The correlation with current BMI became significantly inverse in women with BMI ≥ 25. In women with normal BMI, the percentage of Actinobacteria showed a direct and significant correlation with current BMI, waist circumference, and percentage of body fat. Multiple linear regressions showed that pre-pregnancy BMI was the variable with the highest predictive value with the Bacteroidetes phyla in normal BMI and in BMI ≥ 25. Conclusions: the adiposity of the woman before pregnancy and during lactation would have an important effect on the abundance of Bacteroidetes and Actinobacteria in human milk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.