Forests around the world are increasingly fragmented, and edge effects on forest microclimates have the potential to affect ecosystem functions such as carbon and nutrient cycling. Edges tend to be drier and warmer due to the effects of insolation, wind, and evapotranspiration and these gradients can penetrate hundreds of metres into the forest. Litter decomposition is a key component of the carbon cycle, which is largely controlled by saprotrophic fungi that respond to variation in temperature and moisture. However, the impact of forest fragmentation on litter decay is poorly understood. Here, we investigate edge effects on the decay of wood in a temperate forest using an experimental approach, whereby mass loss in wood blocks placed along 100 m transects from the forest edge to core was monitored over 2 years. Decomposition rate increased with distance from the edge, and was correlated with increasing humidity and moisture content of the decaying wood, such that the decay constant at 100 m was nearly twice that at the edge. Mean air temperature decreased slightly with distance from the edge. The variation in decay constant due to edge effects was larger than that expected from any reasonable estimates of climatic variation, based on a published regional model. We modelled the influence of edge effects on the decay constant at the landscape scale using functions for forest area within different distances from edge across the UK. We found that taking edge effects into account would decrease the decay rate by nearly one quarter, compared with estimates that assumed no edge effect.
Healthy soils are vital for sustainable development, yet consistent soil monitoring is scarce, and soils are poorly represented in United Nations Sustainable Development Goals targets and indicators. There is a clear need for specific ambitions on soil health, accompanying metrics, and cost-effective monitoring methodologies. In this paper, we review citizen science methods and platforms which could compliment structured soil monitoring programmes and contribute to filling this knowledge gap. We focussed on soil structure, organic carbon, biodiversity, nutrients, and vegetation cover. Each method was classified as red, amber, or green (RAG) in terms of time requirements, cost, and data reliability. Toolkits were assessed in terms of cost and requirement for specialist kit. We found 32 methods across the five indicators. Three soil monitoring methods scored green on all criteria, and 20 (63%) scored green on two criteria. We found 13 toolkits appropriate for citizen science monitoring of soil health. Three of them are free, easy to use, and do not require specialist equipment. Our review revealed multiple citizen science methods and toolkits for each of the five soil health indicators. This should pave the way towards a cost-effective, joined-up approach on soil health, informing national and international policy and supporting the move towards farmer-led, data-driven decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.