Recent produce-related outbreaks have been receiving heightened media coverage, which has increased public concern toward the safety of fresh fruits and vegetables. In response, the microbial contamination of Ontario-grown fresh fruits and vegetables was evaluated by the Ontario Ministry of Agriculture, Food and Rural Affairs during the summer of 2004. Prior to this survey, information specific to the microbial contamination of Ontario-produced fruits and vegetables was limited. This nonregulatory survey had two objectives: (i) to obtain a general microbiological profile of selected fruits and vegetables produced in Ontario and (ii) to use the information and knowledge gained from this survey to direct and support future on-farm food safety research and food safety programs to manage potential risks. In all, 1,183 samples, including muskmelon (151), scallions and green onions (173), leaf lettuce (263), organic leaf lettuce (112), head lettuce (155), parsley (127), cilantro (61), and fresh market tomatoes (141), were collected and analyzed. Samples were analyzed for Salmonella, Shigella, and generic E. coli. Enrichment cultures positive for E. coli were further assessed for verotoxigenicity. One sample each of Roma tomato and organic leaf lettuce were positive for Salmonella, with no samples yielding Shigella or verotoxigenic E. coli. The E. coli prevalence was highest in parsley (13.4%), followed by organic leaf lettuce (11.6%), leaf lettuce (6.5%), scallions (6.4%), cilantro (4.9%), muskmelon (1.3%), head lettuce (0%), and fresh market tomatoes (0%). These findings, in combination with foodborne illness data, will help target those commodities that require more focused risk mitigation efforts.
Bacillus cereus is a pathogenic adulterant of raw milk and can persist as spores and grow in pasteurized milk. The objective of this study was to determine the prevalence of B. cereus and its enterotoxins in pasteurized milk at its best-before date when stored at 4, 7, and 10°C. More than 5.5% of moderately temperature-abused products (stored at 7°C) were found to contain >10 CFU/mL B. cereus , and about 4% of them contained enterotoxins at a level that may result in foodborne illness; in addition, more than 31% of the products contained >10 CFU/mL B. cereus and associated enterotoxins when stored at 10°C. Results from a growth kinetic study demonstrated that enterotoxin production by B. cereus in pasteurized milk can occur in as short as 7 to 8 days of storage at 7°C. The higher B. cereus counts were associated with products containing higher butterfat content or with those produced using the conventional high-temperature, short-time pasteurization process. Traditional indicators, aerobic colony counts and psychrotrophic counts, were found to have no correlation with level of B. cereus in milk. The characterization of 17 representative B. cereus isolates from pasteurized milk revealed five toxigenic gene patterns, with all the strains carrying genes encoding for diarrheal toxins but not for an emetic toxin, and with one strain containing all four diarrheal enterotoxin genes (nheA, entFM, hblC, and cytK). The results of this study demonstrate the risks associated even with moderately temperature-abused pasteurized milk and the necessity of a controlled cold chain throughout the shelf life of fluid milk to enhance product safety and minimize foodborne illness.
A study was conducted to identify possible sources of microbial contamination and to assess the effect of good cleaning and sanitation practices on the microbial quality and safety of unpasteurized apple cider. Raw unwashed apples, washed apples, cleaning water, fresh cider, and finished cider samples were collected from five Ontario producers over 4 months and microbiologically tested. Total coliforms were found in 31, 71 and 38% of the unwashed apple, water, and washed apple samples, respectively. Escherichia coli was found in 40% of the water samples from one producer alone. The washing step was identified as a potential source of contamination, possibly due to water in the dump tanks seldom being refreshed, and because scrubbers, spray nozzles, and conveyors were not properly cleaned and sanitized. Higher total coliform counts (P < 0.0001) and prevalence (P < 0.0001) in fresh cider compared with those in unwashed apples and washed apples indicated considerable microbial buildup along the process, possibly explained by the lack of appropriate equipment sanitation procedures. Results showed that producers who had better sanitary practices in place had lower (P < 0.001) total coliform prevalence than the rest of the producers. Overall results show that good sanitation procedures are associated with improved microbial quality of fresh cider in terms of total coliforms and that operators who pasteurize and/or UV treat their product should still be required to have a sound good manufacturing practices program in place to prevent recontamination. Cryptosporidium parvum, an important pathogen for this industry, was found in different sample types, including washed apples, water, and fresh and finished cider.
Automated electronic milk analyzers for rapid enumeration of total bacteria counts (TBC) are widely used for raw milk testing by many analytical laboratories worldwide. In Ontario, Canada, Bactoscan flow cytometry (BsnFC; Foss Electric, Hillerød, Denmark) is the official anchor method for TBC in raw cow milk. Penalties are levied at the BsnFC equivalent level of 50,000 cfu/mL, the standard plate count (SPC) regulatory limit. This study was conducted to assess the BsnFC for TBC in raw goat milk, to determine the mathematical relationship between the SPC and BsnFC methods, and to identify probable reasons for the difference in the SPC:BsnFC equivalents for goat and cow milks. Test procedures were conducted according to International Dairy Federation Bulletin guidelines. Approximately 115 farm bulk tank milk samples per month were tested for inhibitor residues, SPC, BsnFC, psychrotrophic bacteria count, composition (fat, protein, lactose, lactose and other solids, and freezing point), and somatic cell count from March 2009 to February 2010. Data analysis of the results for the samples tested indicated that the BsnFC method would be a good alternative to the SPC method, providing accurate and more precise results with a faster turnaround time. Although a linear regression model showed good correlation and prediction, tests for linearity indicated that the relationship was linear only beyond log 4.1 SPC. The logistic growth curve best modeled the relationship between the SPC and BsnFC for the entire sample population. The BsnFC equivalent to the SPC 50,000 cfu/mL regulatory limit was estimated to be 321,000 individual bacteria count (ibc)/mL. This estimate differs considerably from the BsnFC equivalent for cow milk (121,000 ibc/mL). Because of the low frequency of bulk tank milk pickups at goat farms, 78.5% of the samples had their oldest milking in the tank to be 6.5 to 9.0 d old when tested, compared with the cow milk samples, which had their oldest milking at 4 d old when tested. This may be one of the major factors contributing to the larger goat milk BsnFC equivalence. Correlations and interactions between various test results were also discussed to further understand differences between the 2 methods for goat and cow milks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.