Monocyte chemoattractant protein-1 (MCP-1/CCL2) is renowned for its ability to drive the chemotaxis of myeloid and lymphoid cells. It orchestrates the migration of these cell types both during physiological immune defense and in pathological circumstances, such as autoimmune diseases including rheumatoid arthritis and multiple sclerosis, inflammatory diseases including atherosclerosis, as well as infectious diseases, obesity, diabetes, and various types of cancer. However, new data suggest that the scope of CCL2's functions may extend beyond its original characterization as a chemoattractant. Emerging evidence shows that it can impact leukocyte behavior, influencing adhesion, polarization, effector molecule secretion, autophagy, killing, and survival. The direction of these CCL2-induced responses is context dependent and, in some cases, synergistic with other inflammatory stimuli. The involvement of CCL2 signaling in multiple diseases renders it an interesting therapeutic target, although current targeting strategies have not met early expectations in the clinic. A better understanding of how CCL2 affects immune cells will be pivotal to the improvement of existing therapeutic approaches and the development of new drugs. Here, we provide an overview of the pleiotropic effects of CCL2 signaling on cells of the myeloid lineage, beyond chemotaxis, and highlight how these actions might help to shape immune cell behavior and tumor immunity.
The interplay between cancer cells and immune cells is a key determinant of tumor survival. Here, we uncovered how tumors exploit the immuno-modulatory properties of the extracellular matrix to create a microenvironment that enables their escape from immune surveillance. Using orthotopic grafting of mammary tumor cells in immunocompetent mice and autochthonous models of breast cancer, we discovered how tenascin-C, a matrix molecule absent from most healthy adult tissues but expressed at high levels, and associated with poor patient prognosis, in many solid cancers, controls the immune status of the tumor microenvironment. We found that, although host-derived tenascin-C promoted immunity via recruitment of pro-inflammatory, antitumoral macrophages, tumor-derived tenascin-C subverted host defense by polarizing tumor-associated macrophages towards a pathogenic, immune suppressive phenotype. Therapeutic monoclonal antibodies that blocked tenascin-C activation of toll-like receptor 4 reversed this phenotypic switch in vitro and reduced tumor growth and lung metastasis in vivo, providing enhanced benefit in combination with anti-PD-L1 antibodies over either treatment alone. Combined tenascin-C:macrophage gene expression signatures delineated a significant survival benefit in people with breast cancer. These data revealed a new approach to targeting tumor-specific macrophage polarization that may be effective in controlling the growth and spread of breast tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.