The occurrence of group-living behaviour has often been explained by the benefits individuals receive through cooperation; including increased reproductive output, vigilance against predators, and load-lightening behaviour. However, to fully understand the benefits of group-living, it is important to quantify the costs of living alone. Here, we look at the fate of floaters (individuals who have no fixed territory and remain alone for extended periods) in a population of cooperatively breeding pied babblers Turdoides bicolor. We found that individuals spent less time foraging and more time vigilant for predators when found as a floater compared to when they were in a group. Consequently, they suffered a continuous loss of body mass, with long-term floaters suffering the highest losses. This had a long-term effect: floaters that eventually did regain a position in a group usually entered as helpers, in contrast to dispersers, who usually entered a new group as breeders. This high cost of living alone highlights the benefits of group-living and may help to understand patterns of delayed dispersal in some social species.
Summary1. Breeding with kin can reduce individual fitness through the deleterious effects of inbreeding depression. Inbreeding avoidance mechanisms are expected to have developed in most species, and especially in cooperatively breeding species where individuals may delay dispersal until long after sexual maturity. Such potential mechanisms include sex-biased dispersal and avoidance of kin known through associative learning. 2. The investigation of inbreeding avoidance through dispersal dynamics can be enhanced by combining fine-scale population genetic structure data with detailed behavioural observations of wild populations. 3. We investigate possible inbreeding avoidance in a wild population of cooperatively breeding southern pied babblers (Turdoides bicolor). A combination of genetic, geographic and observational data is used to examine fine-scale genetic structure, dispersal (including sex-biased dispersal) and inheritance of dominance in cooperatively breeding groups. 4. Unusually, sex-bias in dispersal distance does not occur. Rather, individuals appear to avoid inbreeding through two routes. First, through dispersal itself: although both males and females disperse locally, they move outside the range within which genetically similar individuals are usually found, going twice as far from natal groups as from non-natal groups. Second, through avoidance of familiar group members as mates: individuals inherit a dominant position in the natal group only when an unrelated breeding partner is present. 5. This study uses spatial genetic analyses to investigate inbreeding avoidance mechanisms in a cooperative breeder and shows that individuals of both sexes can avoid inbreeding through a dispersal distance mechanism. While it appears that dispersal allows most individuals to move beyond the range of closely related kin, matings may still occur between distant kin. Nevertheless, any costs of breeding with a distant relative may be outweighed by the benefits of local dispersal and the immense fitness gains available from attaining a breeding position.
Summary1. Behavioural synchrony typically involves trade-offs. In the context of foraging, for example, synchrony may be suboptimal when individuals have different energy requirements but yield net benefits in terms of increased foraging success or decreased predation risk. 2. Behavioural synchrony may also be advantageous when individuals collaborate to achieve a common goal, such as raising young. For example, in several bird species, provisioners synchronize nest-feeding visits. However, despite the apparent prevalence of provisioning synchrony, it is not known whether it is adaptive or what its function might be. 3. Here, we propose a novel explanation for provisioning synchrony: it increases brood survival by decreasing the number of temporally separate nest visits and accordingly the chance that the nest will be detected by predators. Using cooperatively breeding pied babblers, we showed experimentally that provisioners synchronized nest visits by waiting for another provisioner before returning to the nest. Brood survival increased with provisioning synchrony. Provisioners were more likely to synchronize feeding visits for older nestlings as they were louder and possibly more conspicuous to predators. Finally, provisioners in large groups were more likely to wait for other provisioners and synchronized a higher proportion of all visits than those in smaller groups. Thus, provisioning synchrony may be one mechanism by which large groups increase brood survival in this species. 4. This study highlights a novel strategy that birds use to increase the survival of young and demonstrates the advantages of coordinated behaviour in social species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.