Greig cephalopolysyndactyly syndrome, characterized by craniofacial and limb anomalies (GCPS; MIM 175700), previously has been demonstrated to be associated with translocations as well as point mutations affecting one allele of the zinc finger gene GLI3. In addition to GCPS, Pallister-Hall syndrome (PHS; MIM 146510) and post-axial polydactyly type A (PAP-A; MIM 174200), two other disorders of human development, are caused by GLI3 mutations. In order to gain more insight into the mutational spectrum associated with a single phenotype, we report here the extension of the GLI3 mutation analysis to 24 new GCPS cases. We report the identification of 15 novel mutations present in one of the patient's GLI3 alleles. The mutations map throughout the coding gene regions. The majority are truncating mutations (nine of 15) that engender prematurely terminated protein products mostly but not exclusively N-terminally to or within the central region encoding the DNA-binding domain. Two missense and two splicing mutations mapping within the zinc finger motifs presumably also interfere with DNA binding. The five mutations identified within the protein regions C-terminal to the zinc fingers putatively affect additional functional properties of GLI3. In cell transfection experiments using fusions of the DNA-binding domain of yeast GAL4 to different segments of GLI3, transactivating capacity was assigned to two adjacent independent domains (TA(1)and TA(2)) in the C-terminal third of GLI3. Since these are the only functional domains affected by three C-terminally truncating mutations, we postulate that GCPS may be due either to haploinsufficiency resulting from the complete loss of one gene copy or to functional haploinsufficiency related to compromised properties of this transcription factor such as DNA binding and transactivation.
Zyxin is a component of adhesion plaques that has been suggested to perform regulatory functions at these specialized regions of the plasma membrane. Here we describe the isolation and characterization of cDNAs encoding human and mouse zyxin. Both the human and mouse zyxin proteins display a collection of proline-rich sequences as well as three copies of the LIM domain, a zinc finger domain found in many signaling molecules. The human zyxin protein is closely related in sequence to proteins implicated in benign tumorigenesis and steroid receptor binding. Antibodies raised against human zyxin recognize an 84-kDa protein by Western immunoblot analysis. The protein is localized at focal contacts in adherent erythroleukemia cells. By Northern analysis, we show that zyxin is widely expressed in human tissues. The zyxin gene maps to human chromosome 7q32-q36.
Greig cephalopolysyndactyly syndrome (GCPS, MIM 175700) is a rare autosomal dominant developmental disorder characterized by craniofacial abnormalities and post-axial and pre-axial polydactyly as well as syndactyly of hands and feet. Human GLI3, located on chromosome 7p13, is a candidate gene for the syndrome because it is interrupted by translocation breakpoints associated with GCPS. Since hemizygosity of 7p13 resulting in complete loss of one copy of GLI3 causes GCPS as well, haploinsufficiency of this gene was implicated as a mechanism to cause this developmental malformation. To determine if point mutations within GLI3 could be responsible for GCPS we describe the genomic sequences at the boundaries of the 15 exons and primer pair sequences for mutation analysis with polymerase chain reaction-based assays of the entire GLI3 coding sequences. In two GCPS cases, both of which did not exhibit obvious cytogenetic rearrangements, point mutations were identified in different domains of the protein, showing for the first time that Greig syndrome can be caused by GLI3 point mutations. In one case a nonsense mutation in exon X generates a stop codon truncating the protein in the C-H link of the first zinc finger. In the second case a missense mutation in exon XIV causes a Pro-->Ser replacement at a position that is conserved among GLI genes from several species altering a potential phosphorylation site.
Rabbit uteroglobin is the founder member of a family of mammalian proteins that has expanded to more than 20 members within the last few years. All members are small, secretory, rarely glycosylated dimeric proteins with unclear physiological functions and are mainly expressed in mucosal tissues. A phylogenetic analysis shows that the family can be grouped into five subfamilies, A to E. Subfamily A contains rabbit uteroglobin and its orthologues from various species; most of these have been described to form antiparallel homodimers via two intermolecular disulfide bonds. All other subfamily members contain a third conserved cysteine and, from existing biochemical data, it can be predicted that a member of subfamily B or C will likely form heterodimers with a partner from subfamily E or D, respectively. Besides the mentioned cysteines, only one central lysine is conserved in all family members. In the known uteroglobin structures, this lysine forms an exposed salt bridge with an aspartate side chain, which is conserved in almost all sequences. Using radiation hybrid mapping and P1 clone analysis and utilizing data from the human genome project, we show that all known five human family members (Clara cell 10‐kDa protein, lipophilins A and B, lacryglobin, mammaglobin) and a new member, we call lymphoglobin, are localized on chromosome 11q12.2 in a dense cluster spanning not more than approximately 400 kbp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.