Climate suitability is projected to decline for many subalpine species, raising questions about managing species under a deteriorating climate. Whitebark pine (WBP) (Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE) crystalizes the challenges that natural resource managers of many high mountain ecosystems will likely face in the coming decades. We review the system of interactions among climate, competitors, fire, bark beetles, white pine blister rust (Cronartium ribicola), and seed dispersers that make WBP especially vulnerable to climate change. A well-formulated interagency management strategy has been developed for WBP, but it has only been implemented across <1% of the species GYE range. The challenges of complex climate effects and land allocation constraints on WBP management raises questions regarding the efficacy of restoration efforts for WBP in GYE. We evaluate six ecological mechanisms by which WBP may remain viable under climate change: climate microrefugia, climate tolerances, release from competition, favorable fire regimes, seed production prior to beetle-induced mortality, and blister-rust resistant trees. These mechanisms suggest that WBP viability may be higher than previously expected under climate change. Additional research is warranted on these mechanisms, which may provide a basis for increased management effectiveness. This review is used as a basis for deriving recommendations for other subalpine species threatened by climate change.
Aims In western North America ectomycorrhizal fungi are critical to establishment of conifers in low nitrogen soils. Fire can affect both ectomycorrhizal fungi and soil properties, and inoculation with ectomycorrhizal fungi is recommended when planting on burns for restoration. The aim of this study was to examine how Suillus species used in inoculation affect whitebark pine (Pinus albicaulis L.) seedlings planted in fire-impacted soil. Methods In a greenhouse experiment, Suillus-colonized and uncolonized whitebark pine seedlings were planted in unsterilized and sterilized (control) soil from a recent burn. After 6 months, foliar nitrogen and carbon content, concentration, and stable isotope values were assessed, along with growth parameters. Results When seedlings were colonized, biomass was 61% greater, foliar nitrogen content 25% higher, foliar nitrogen concentration 30-63% lower; needles had lower δ 15 N and higher δ 13 C. Differences were more pronounced in sterilized soil where colonization was higher. Foliar N content was negatively correlated with δ 15 N values. Conclusions Colonization by host-specific fungi produced larger seedlings with higher foliar nitrogen content in both burn soils. The hypothesis that ectomycorrhizal fungi on roots fractionate nitrogen isotopes leading to lower δ 15 N in needles is supported. This helps explain restoration outcomes, and bridges the gap between field and in vitro investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.