The synthesis of ribosomes in eukaryotic cells is a complex process involving many nonribosomal protein factors and snoRNAs. In general, the processes of rRNA transcription and ribosome assembly are treated as temporally or spatially distinct. Here, we describe the identification of a point mutation in the second largest subunit of RNA polymerase I near the active center of the enzyme that results in an elongation-defective enzyme in the yeast Saccharomyces cerevisiae. In vivo, this mutant shows significant defects in rRNA processing and ribosome assembly. Taken together, these data suggest that transcription of rRNA by RNA polymerase I is linked to rRNA processing and maturation. Thus, RNA polymerase I, elongation factors, and rRNA sequence elements appear to function together to optimize transcription elongation, coordinating cotranscriptional interactions of many factors/snoRNAs with pre-rRNA for correct rRNA processing and ribosome assembly.
Regulation of RNA polymerase I (Pol I) transcription is critical for controlling ribosome synthesis. Most previous investigations into Pol I transcription regulation have focused on transcription initiation. To date, the factors involved in the control of Pol I transcription elongation are poorly understood. The Paf1 complex (Paf1C) is a well-defined factor that influences polymerase II (Pol II) transcription elongation. We found that Paf1C associates with rDNA. Deletion of genes for Paf1C subunits (CDC73, CTR9, or PAF1) reduces the rRNA synthesis rate; however, there is no significant alteration of rDNA copy number or Pol I occupancy of the rDNA. Furthermore, EM analysis revealed a substantial increase in the frequency of large gaps between transcribing polymerases in ctr9⌬ mutant cells compared with WT. Together, these data indicate that Paf1C promotes Pol I transcription through the rDNA by increasing the net rate of elongation. Thus, the multifunctional, conserved transcription factor Paf1C plays an important role in transcription elongation by Pol I in vivo.gene expression ͉ ribosome
To better understand the role of topoisomerase activity in relieving transcription-induced supercoiling, yeast genes encoding rRNA were visualized in cells deficient for either or both of the two major topoisomerases. In the absence of both topoisomerase I (Top1) and topoisomerase II (Top2) activity, processivity was severely impaired and polymerases were unable to transcribe through the 6.7-kb gene. Loss of Top1 resulted in increased negative superhelical density (two to six times the normal value) in a significant subset of rRNA genes, as manifested by regions of DNA template melting. The observed DNA bubbles were not R-loops and did not block polymerase movement, since genes with DNA template melting showed no evidence of slowed elongation. Inactivation of Top2, however, resulted in characteristic signs of slowed elongation in rRNA genes, suggesting that Top2 alleviates transcription-induced positive supercoiling. Together, the data indicate that torsion in front of and behind transcribing polymerase I has different consequences and different resolution. Positive torsion in front of the polymerase induces supercoiling (writhe) and is largely resolved by Top2. Negative torsion behind the polymerase induces DNA strand separation and is largely resolved by Top1.Eukaryotic cells have two major topoisomerases that are capable of efficiently relaxing torsionally stressed DNA: topoisomerase I (Top1) and topoisomerase II (Top2) (75). They are both abundant nuclear proteins with roles in many DNA activities, and since they both can relax positive and negative torsion, they can substitute for each other in most situations (11,28,29,35,62). In spite of this partial functional redundancy, they control DNA topology by very different mechanisms (65). Top1 (a type IB topoisomerase) makes transient single-strand breaks in torsionally stressed DNA (recognizing the torque in such DNA), followed by controlled rotation of the nicked strand and resealing of the DNA in a more relaxed state (38). Top2 (a type IIA topoisomerase) recognizes juxtaposed DNA helices (as in supercoiled DNA) and passes one DNA helix through the other by making a transient doublestrand break in one of the helices (61, 65
Spt5p is a universally conserved transcription factor that plays multiple roles in eukaryotic transcription elongation. Spt5p forms a heterodimer with Spt4p and collaborates with other transcription factors to pause or promote RNA polymerase II transcription elongation. We have shown previously that Spt4p and Spt5p also influence synthesis of ribosomal RNA by RNA polymerase (Pol) I; however, previous studies only characterized defects in Pol I transcription induced by deletion of SPT4. Here we describe two new, partially active mutations in SPT5 and use these mutant strains to characterize the effect of Spt5p on Pol I transcription. Genetic interactions between spt5 and rpa49⌬ mutations together with measurements of ribosomal RNA synthesis rates, rDNA copy number, and Pol I occupancy of the rDNA demonstrate that Spt5p plays both positive and negative roles in transcription by Pol I. Electron microscopic analysis of mutant and WT strains confirms these observations and supports the model that Spt4/5 may contribute to pausing of RNA polymerase I early during transcription elongation but promotes transcription elongation downstream of the pause(s). These findings bolster the model that Spt5p and related homologues serve diverse critical roles in the control of transcription.
5S rRNA genes from Saccharomyces cerevisiae were examined by Miller chromatin spreading, representing the first quantitative analysis of RNA polymerase III genes in situ by electron microscopy. These very short genes, ϳ132 nucleotides (nt), were engaged by one to three RNA polymerases. Analysis in different growth conditions and in strains with a fourfold range in gene copy number revealed regulation at two levels: number of active genes and polymerase loading per gene. Repressive growth conditions (presence of rapamycin or postexponential growth) led first to fewer active genes, followed by lower polymerase loading per active gene. The polymerase III elongation rate was estimated to be in the range of 60 to 75 nt/s, with a reinitiation interval of ϳ1.2 s. The yeast La protein, Lhp1, was associated with 5S genes. Its absence had no discernible effect on the amount or size of 5S RNA produced yet resulted in more polymerases per gene on average, consistent with a non-rate-limiting role for Lhp1 in a process such as polymerase release/recycling upon transcription termination.In eukaryotes, nuclear RNA transcription is carried out by one of three specialized RNA polymerases, Pol I, II, and III, with Pol III dedicated to making short, untranslated RNAs, including tRNAs, 5S rRNA, and many others (12). Consistent with the central role of these RNAs in protein synthesis, Pol III is an essential enzyme whose activity is regulated by various growth control pathways and is deregulated in human cancer cells and during cardiac hypertrophy (23, 67). Many years of study have led to detailed knowledge of the different types of promoters and of the trans-acting factors involved in Pol III gene expression (20,31,56). For the Saccharomyces cerevisiae 5S RNA genes studied herein, three factors are required: TFIIIA, which specifically binds the internal promoter of 5S genes, and TFIIIB and C, which are required for all yeast Pol III genes. Preinitiation complex formation begins with the deposition of TFIIIA on the internal promoter, followed by recruitment of the six-subunit TFIIIC complex, which contacts TFIIIA as well as sequences within the gene (Fig. 1A). TFIIIC recruits the three-subunit TFIIIB complex, which binds a conserved upstream regulatory sequence and is necessary and sufficient for Pol III transcription (30). TFIIIB, which contains TATA binding protein, recruits Pol III to the promoter and plays an essential role in the formation of the open initiation complex. The stability of TFIIIB, which restructures the DNA and recruits Pol III through multiple rounds of transcription (7,30), renders these genes very highly transcribed and the most prominent binding sites for TATA binding protein in the cell (51). The internally bound factors do not form a barrier to Pol III elongation.We used Miller chromatin spreading (39) to directly visualize the 5S gene population in actively growing yeast cells. This electron microscopy (EM) method has frequently been applied to the study of Pol I and Pol II gene expression. Pol III genes, h...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.