Analyte concentration effects on the first reduction process of methyl viologens and diquat redox flow battery electrolytes were examined by cyclic voltammetry in aqueous media. A simple one-electron transfer mechanism to form radical cations was detected for diquat, 4,4′-dimethyl diquat, and bis(3trimethylammonio)-propyl viologen compounds. The radical cations attach to the electrode surface when the source of their electrogeneration is methyl viologen molecules bearing PF 6 − ions as a counterpart. However, this inner sphere reduction mechanism was not observed in methyl viologen having an I − counterion. For the latter compound, as well as for 5,5′-dimethyl diquat and 1,1′bis(3-sulfonatopropyl)-4,4′-bipyridinium, a piece of experimental evidence for unexpected, fast, and reversible dimerization interactions between their electrogenerated radical cations is presented. To get information on these bimolecular interactions, a screening methodology (using different levels of theory) was employed in finding suitable dimeric structures and their related interaction energies. By using diquat as a reference system, a relationship between calculated interaction energies and the corresponding experimental dimerization constants was obtained. The examination of redox-active molecules using this experimental and theoretical approach will allow a better selection of redox flow battery electrolytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.