This in vivo observation demonstrated traces of reperfusion injury in liver induced by the insufflation and desufflation of CO(2 )pneumoperitoneum. The clinical relevance of this finding and the issue of using hepatoprotective substances to prevent this injury should be further investigated.
Recent observations showed an improvement of hepatic macro- and microhemodynamics as well as survival rates after warm ischemia of the liver following treatment with N-acetylcysteine (NAC). In this study we assessed the influence of NAC on the hepatic microcirculation after orthotopic liver transplantation (OLT) using intravital fluorescence microscopy. OLT with simultaneous arterialization was performed in 16 male Lewis rats following cold storage in University of Wisconsin solution for 24 hr. Within the experimental group (n = 8) donors received NAC (400 mg/kg) 25 min before hepatectomy. In addition, high-dose treatment of recipients with NAC (400 mg/kg) was started with reperfusion. Control animals (n = 8) received an equivalent amount of Ringer's solution. Intravital fluorescence microscopy was performed 30-90 min after reperfusion assessing acinar and sinusoidal perfusion, leukocyte-endothelium interaction, and phagocytic activity. Treatment with NAC reduced the number of nonperfused sinusoid from 52.4 +/- 0.8% to 15.7 +/- 0.5% (p = 0.0001) (mean +/- SEM). Furthermore, we achieved a significant reduction of leukocytes adhering to sinusoidal endothelium (per mm2 liver surface) from 351.9 +/- 13.0 in controls to 83.6 +/- 4.2 in the experimental group (P = 0.0001). In postsinusoidal venules, treatment with NAC decreased the number of sticking leukocytes (per mm2 endothelium) from 1098.5 +/- 59.6 to 425.9 +/- 37.7 (P = 0.0001). Moreover, bile flow was significantly increased after therapy with NAC (4.3 +/- 1.2 vs. 2.2 +/- 0.7 ml/90 min x 100g liver) (P < 0.05). Phagocytic activity was not influenced by application of NAC. We conclude that high-dose therapy with NAC in OLT attenuates manifestations of microvascular perfusion failure early after reperfusion and should be considered as a means to reduce reperfusion injury.
Genetic modification of human bone marrow mesenchymal stem cells (MSC) is highly valuable for their exploitation in basic science and therapeutic applications, for example in cancer. We present here a new, fast and easy-to-use method to enrich a functional population of lentiviral (LV)-transduced MSC expressing enhanced green fluorescent protein (eGFP). We replaced the eGFP gene by a fusion gene of puromycin acetyltransferase and eGFP. Upon LV gene transfer and puromycin selection, we quickly obtained a pure transduced MSC population, in which growth, differentiation capacity and migration preferences were not compromised. Furthermore, we are the first to report the migration velocity of MSC among which 30% were moving and velocity of about 15 mm h À1 was not altered by LV transduction. Manipulated MSC underwent senescence one passage earlier than non-transduced cells, suggesting the use for therapeutic intervention in early passage numbers. Upon tail vein application in nude mice, the majority of LV-transduced MSC could be detected in human orthotopic pancreatic tumor xenografts and to a minor extent in mouse liver, kidney and lung. Together, LV transduction of genes to MSC followed by puromycin selection is a powerful tool for basic research and improves the therapeutic prospects of MSC as vehicles in gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.