An unusually high frequency of the lamellar ichthyosis TGM1 mutation, c.1187G > A, has been observed in the Ecuadorian province of Manabí. Recently, the same mutation has been detected in a Galician patient (Northwest of Spain). By analyzing patterns of genetic variation around this mutation in Ecuadorian patients and population matched controls, we were able to estimate the age of c.1187G > A and the time to their most recent common ancestor (TMRCA) of c.1187G > A Ecuadorian carriers. While the estimated mutation age is 41 generations ago (~1,025 years ago [ya]), the TMRCA of Ecuadorian c.1187G > A carrier haplotypes dates to just 17 generations (~425 ya). Probabilistic-based inferences of local ancestry allowed us to infer a most likely European origin of a few (16% to 30%) Ecuadorian haplotypes carrying this mutation. In addition, inferences on demographic historical changes based on c.1187G > A Ecuadorian carrier haplotypes estimated an exponential population growth starting ~20 generations, compatible with a recent founder effect occurring in Manabí. Two main hypotheses can be considered for the origin of c.1187G > A: ( i ) the mutation could have arisen in Spain >1,000 ya (being Galicia the possible homeland) and then carried to Ecuador by Spaniards in colonial times ~400 ya, and ( ii ) two independent mutational events originated this mutation in Ecuador and Galicia. The geographic and cultural characteristics of Manabí could have favored a founder effect that explains the high prevalence of TGM1 c.1187G > A in this region.
Background Autosomal recessive congenital ichthyoses (ARCI) have been associated with different phenotypes including: harlequin ichthyosis (HI), congenital ichthyosiform erythroderma (CIE), and lamellar ichthyosis (LI). While pathogenic variants in all ARCI genes are associated with LI and CIE phenotypes, the unique gene associated with HI is ABCA12 . In HI, the most severe ARCI form, pathogenic variants in both ABCA12 gene alleles usually have a severe impact on protein function. The presence of at least one non‐truncating variant frequently causes a less severe congenital ichthyosis phenotype (LI and CIE). Methods We report the case of a 4‐year‐old Ecuadorian boy with a severe skin disease. Genetic diagnosis was performed by NGS. In silico predictions were performed using Alamut software v2.11. A review of the literature was carried out to identify all patients carrying ABCA12 splice‐site and missense variants, and to explore their genotype‐phenotype correlations. Results Genetic testing revealed a nonsense substitution, p.(Arg2204*), and a new missense variant, p.(Val1927Leu), in the ABCA12 gene. After performing in silico analysis and a comprehensive review of the literature, we conclude that p.(Val1927Leu) affects a well conserved residue which could either disturb the protein function or alter the splicing process, both alternatives could explain the severe phenotype of our patient. Conclusion This case expands the spectrum of ABCA12 reported disease‐causing variants which is important to unravel genotype‐phenotype correlations and highlights the importance of missense variants in the development of HI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.