Cell cycle regulatory proteins are important candidates for therapeutic tumour suppressors. Adenovirus vectors were constructed to overexpress cyclin kinase inhibitors p16 INK4A , p18 INK4C , p19 INK4D , p21 WAF1/CIP1 and p27 KIP1 under the control of the murine cytomegalovirus immediate early gene promoter. These vectors directed the e cient expression of each of the cyclin kinase inhibitors and induced growth arrest, inhibited DNA synthesis, and prevented phosphorylation of the retinoblastoma protein (pRb) in cell lines expressing functional pRb. In pRbde®cient cells, expression of the cyclin kinase inhibitors was not e ective in inhibiting DNA replication or growth arrest. Interestingly, three of the cyclin kinase inhibitors, p16, p18 and p27 were found to induce apoptotic death in transduced HeLa and A549 cells. When the vectors were tested for their ability to inhibit tumorigenicity in a polyomavirus middle T antigen model of murine breast carcinoma, expression of the cyclin kinase inhibitors resulted in a delay in tumour formation that varied from several weeks for the p19 expressing vector to greater than 25 weeks for the p27 expressing vector. When tumours were injected directly with the adenovirus vectors expressing the cyclin kinase inhibitors, only treatment with the vector expressing p16 resulted in a delay in tumour growth.
Myxoma virus is a leporipoxvirus that causes a highly lethal virulent disease known as myxomatosis in the European rabbit. An important aspect of myxoma virus pathogenesis is the ability of the virus to productively infect lymphocytes and spread to secondary sites via lymphatic channels. We investigated the infection of the CD4+ T lymphoma cell line RL-5 with myxoma virus and Shope fibroma virus, a related but benign leporipoxvirus, and observed that myxoma virus, but not Shope fibroma virus, was able to productively infect RL-5 cells. We also discovered that infection of RL-5 cells with Shope fibroma virus or attenuated myxoma virus mutants containing disruptions in either the T2 or the M11L gene resulted in the rapid induction of DNA fragmentation, followed by morphological changes and loss in cell integrity characteristic of cell death by apoptosis. Purified exogenous T2 protein was unable to prevent apoptosis, suggesting that T2 functions intracellularly. Thus, myxoma virus T2, originally described as a secreted homologue of the tumor necrosis factor receptor, and M11L, a novel transmembrane species with no known cellular homologue, function to extend virus host range for replication in rabbit T lymphocytes through the inhibition of apoptosis in infected T lymphocytes.
Cyclin-dependent kinase inhibitors (CDKIs) are considered as novel anticancer agents because of their ability to induce growth arrest or apoptosis in tumour cells. It has not yet been fully determined, however, which CDKI is the best candidate for the treatment of malignant gliomas and whether normal brain tissues are affected by CDKI expression. Using recombinant adenoviral vectors that express CDKIs (p16 INK4A , p18 INK4C , p19 INK4D , p21 WAF1/CIP1 and p27 KIP1 ), we compared the antitumour effect of CDKIs on malignant glioma cell lines (A172, GB-1, T98G, U87-MG, U251-MG and U373-MG). p27 KIP1 showed higher ability to suppress the growth of all tumour cells tested than other CDKIs. Interestingly, overexpression of p27 KIP1 induced autophagic cell death, but not apoptosis in tumour cells. On the other hand, p27 KIP1 overexpression did not inhibit the viability of cultured astrocytes (RNB) nor induced autophagy. Overall, our findings suggest that gene transfer of p27 KIP1 may be a promising approach for the therapy of malignant gliomas.
Myxoma virus is an infectious poxvirus pathogen that induces a virulent systemic disease called myxomatosis in European rabbits. The disease is rapidly and uniformly fatal to susceptible rabbits and is characterized by generalized dysfunction of cellular immunity and multiple interruptions of the host cytokine network. A number of virus genes are classified as virulence factors because virus constructs bearing targeted gene disruptions induce attenuated disease symptoms. Many of these genes encode proteins that interact directly with effector elements of the host immune system. Included among these immunosubversive viral proteins are secreted mimics of host ligands or regulators (virokines) and homologues of cellular cytokine receptors (viroceptors). Five examples of these immune modulator proteins encoded by myxoma virus are reviewed: (1) myxoma growth factor, a member of the epidermal growth factor ligand superfamily; (2) SERP-1, a secreted serine proteinase inhibitor; (3) M11L, a receptor-like surface protein; (4) T2, a tumor necrosis factor receptor homologue; and (5) T7, an interferon-gamma receptor homologue. The origin of viral strategies designed to subvert immune regulation by host cytokines is considered in the context of the biology of myxoma virus within immunocompetent hosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.