Biofilm formation can be considered a bacterial virulence mechanism. In a range of Gram-negatives, increased levels of the second messenger cyclic diguanylate (c-di-GMP) promotes biofilm formation and reduces motility. Other bacterial processes known to be regulated by c-di-GMP include cell division, differentiation and virulence. Among Gram-positive bacteria, where the function of c-di-GMP signalling is less well characterized, c-di-GMP was reported to regulate swarming motility in Bacillus subtilis while having very limited or no effect on biofilm formation. In contrast, we show that in the Bacillus cereus group c-di-GMP signalling is linked to biofilm formation, and to several other phenotypes important to the lifestyle of these bacteria. The Bacillus thuringiensis 407 genome encodes eleven predicted proteins containing domains (GGDEF/EAL) related to c-di-GMP synthesis or breakdown, ten of which are conserved through the majority of clades of the B. cereus group, including Bacillus anthracis. Several of the genes were shown to affect biofilm formation, motility, enterotoxin synthesis and/or sporulation. Among these, cdgF appeared to encode a master diguanylate cyclase essential for biofilm formation in an oxygenated environment. Only two cdg genes (cdgA, cdgJ) had orthologs in B. subtilis, highlighting differences in c-di-GMP signalling between B. subtilis and B. cereus group bacteria.
Background: This paper reports development of a new approach towards analytical liquid–liquid–liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated by an artificial liquid membrane. Parallel artificial liquid membrane extraction is a modification of hollow-fiber liquid-phase microextraction, where the hollow fibers are replaced by flat membranes in a 96-well plate format. Results: Four basic drugs (pethidine, nortriptyline, methadone and haloperidol) were extracted from human plasma in 30 min, followed by analysis with LC–MS/MS. Extraction recoveries for the model analytes were in the range of 34–74% from human plasma. LOQs were in the range of 0.01–0.35 ng/ml, linearity above 0.9955 for all drugs and with RSD values below 12%. Conclusion: Liquid–liquid–liquid membrane extraction was successfully performed in a slightly modified commercially available 96-well plate format.
This paper describes the concept of parallel electromembrane extraction (Pa-EME) with flat membranes in a multiwell format for the first time. The setup is based on a multiwell plate and provided simultaneous and selective isolation, cleanup, and enrichment of several human plasma samples as well as LC-MS-compatible extracts within 8 min of extraction. Undiluted human plasma samples spiked with four antidepressant drugs were added to separate wells in the donor plate. Subsequently, the samples were extracted with Pa-EME. The four drugs migrated electrokinetically from undiluted human plasma through a flat polypropylene membrane impregnated with 2-nitrophenyl octyl ether, and were isolated into formic acid. Extraction time, extraction voltage, agitation rate, sample volume, and acceptor solution volume were all optimized with an experimental design. The optimal conditions were as follows: The agitation rate was 1,040 rpm, and an extraction voltage of 200 V was applied. The sample volume and acceptor solution volume was 240 and 70 μL, respectively. The extraction was continued for 8 min. Eventually, the extracts were analyzed by LC-MS/MS. The combination of Pa-EME with LC-MS/MS provided quantitation limits below the therapeutic level and reported relative standard deviations in the range 5-13 %. Linear calibration curves were obtained for all analytes, and the correlation coefficients were above 0.9974 in the range 1-400 ng mL(-1). The drug concentrations from two subjects treated with quetiapine and sertraline were successfully determined with Pa-EME combined with LC-MS/MS. Post-column infusion experiments demonstrated that Pa-EME provided extracts free from interfering matrix components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.