SUMMARY It is not understood why healthy tissues can exhibit varying levels of sensitivity to the same toxic stimuli. Using BH3 Profiling, we find that mitochondria of many adult somatic tissues, including brain, heart and kidneys, are profoundly refractory to pro-apoptotic signaling, leading to cellular resistance to cytotoxic chemotherapies and ionizing radiation. In contrast, mitochondria from these tissues in young mice and humans are primed for apoptosis, predisposing them to undergo cell death in response to genotoxic damage. While expression of the apoptotic protein machinery is nearly absent by adulthood, in young tissues its expression is driven by c-Myc, linking developmental growth to cell death. These differences may explain why pediatric cancer patients have a higher risk of developing treatment-associated toxicities.
Rett syndrome and neurodevelopmental disorders with features overlapping this syndrome frequently remain unexplained in patients without clinically identified MECP2 mutations. We recruited a cohort of 11 patients with features of Rett syndrome and negative initial clinical testing for mutations in MECP2. We analyzed their phenotypes to determine whether patients met formal criteria for Rett syndrome, reviewed repeat clinical genetic testing, and performed exome sequencing of the probands. Using 2010 diagnostic criteria, three patients had classical Rett syndrome, including two for whom repeat MECP2 gene testing had identified mutations. In a patient with neonatal onset epilepsy with atypical Rett syndrome, we identified a frameshift deletion in STXBP1. Among seven patients with features of Rett syndrome not fulfilling formal diagnostic criteria, four had suspected pathogenic mutations, one each in MECP2, FOXG1, SCN8A, and IQSEC2. MECP2 mutations are highly correlated with classical Rett syndrome. Genes associated with atypical Rett syndrome, epilepsy, or intellectual disability should be considered in patients with features overlapping with Rett syndrome and negative MECP2 testing. While most of the identified mutations were apparently de novo, the SCN8A variant was inherited from an unaffected parent mosaic for the mutation, which is important to note for counseling regarding recurrence risks.
Cancer cells maintain their telomeres by either re-activating telomerase or adopting the homologous recombination (HR)-based Alternative Lengthening of Telomere (ALT) pathway. Among the many prominent features of ALT cells, C-circles (CC) formation is considered to be the most specific and quantifiable biomarker of ALT. However, the molecular mechanism behind the initiation and maintenance of CC formation in ALT cells is still largely unknown. We reported previously that depletion of the FANCM complex (FANCM-FAAP24-MHF1&2) in ALT cells induced pronounced replication stress, which primarily takes place at their telomeres. Here, we characterized the changes in ALT associated phenotypes in cells deficient of the FANCM complex. We found that depletion of FAAP24 or FANCM, but not MHF1&2, induces a dramatic increase of CC formation. Most importantly, we identified multiple DNA damage response (DDR) and DNA repair pathways that stimulate the dramatic increase of CC formation in FANCM deficient cells, including the dissolvase complex (BLM-TOP3A-RMI1/2, or BTR), DNA damage checkpoint kinases (ATR and Chk1), HR proteins (BRCA2, PALB2, and Rad51), as well as proteins involved in Break-Induced Replication (BIR) (POLD1 and POLD3). In addition, FANCD2, another Fanconi Anemia (FA) protein, is also required for CC formation, likely through promoting the recruitment of BLM to the replication stressed ALT telomeres. Finally, we demonstrated that TERRA R-loops accumulate at telomeres in FANCM deficient ALT cells and downregulation of which attenuates the ALT-associated PML bodies (APBs), replication stress and CC formation. Taken together, our data suggest that FANCM prevents replisomes from stalling/collapsing at ALT telomeres by disrupting TERRA R-loops.
We identify a novel molecular pathway by which tDCS modulates cortical excitability, and indicate a capacity for synergistic interaction between tDCS and pharmacologic mGluR5 facilitation. The findings support exploration of cathodal tDCS as a treatment of neurologic conditions characterized by aberrant regional cortical excitability referable to mGluR5-mTOR signaling. Ann Neurol 2016;80:233-246.
Objective Cathodal direct current stimulation (cDCS) induces long‐term depression (LTD)‐like reduction of cortical excitability (DCS‐LTD), which has been tested in the treatment of epilepsy with modest effects. In part, this may be due to variable cortical neuron orientation relative to the electric field. We tested, in vivo and in vitro, whether DCS‐LTD occurs throughout the cortical thickness, and if not, then whether drug–DCS pairing can enhance the uniformity of the cortical response and the cDCS antiepileptic effect. Methods cDCS‐mediated changes in cortical excitability were measured in vitro in mouse motor cortex (M1) and in human postoperative neocortex, in vivo in mouse somatosensory cortex (S1), and in a mouse kainic acid (KA)‐seizure model. Contributions of N‐methyl‐D‐aspartate–type glutamate receptors (NMDARs) to cDCS‐mediated plasticity were tested with application of NMDAR blockers (memantine/D‐AP5). Results cDCS reliably induced DCS‐LTD in superficial cortical layers, and a long‐term potentiation (LTP)‐like enhancement (DCS‐LTP) was recorded in deep cortical layers. Immunostaining confirmed layer‐specific increase of phospho‐S6 ribosomal protein in mouse M1. Similar nonuniform cDCS aftereffects on cortical excitability were also found in human neocortex in vitro and in S1 of alert mice in vivo. Application of memantine/D‐AP5 either produced a more uniform DCS‐LTD throughout the cortical thickness or at least abolished DCS‐LTP. Moreover, a combination of memantine and cDCS suppressed KA‐induced seizures. Interpretation cDCS aftereffects are not uniform throughout cortical layers, which may explain the incomplete cDCS clinical efficacy. NMDAR antagonists may augment cDCS efficacy in epilepsy and other disorders where regional depression of cortical excitability is desirable. ANN NEUROL 2020;88:489–502
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.