No beneficial effects of PA over SA in the subacute phase poststroke were observed, which was comparable for situations of varying complexity. Heterogeneity of the syndrome, time post-stroke onset, and the content of treatment as usual are discussed. Basic knowledge on subtypes and recovery patterns would aid the development of tailored treatment.
To facilitate visual continuity across eye movements, the visual system must presaccadically acquire information about the future foveal image. Previous studies have indicated that visual working memory (VWM) affects saccade execution. However, the reverse relation, the effect of saccade execution on VWM load is less clear. To investigate the causal link between saccade execution and VWM, we combined a VWM task and a saccade task. Participants were instructed to remember one, two, or three shapes and performed either a No Saccade-, a Single Saccade- or a Dual (corrective) Saccade-task. The results indicate that items stored in VWM are reported less accurately if a single saccade-or a dual saccade-task is performed next to retaining items in VWM. Importantly, the loss of response accuracy for items retained in VWM by performing a saccade was similar to committing an extra item to VWM. In a second experiment, we observed no cost of executing a saccade for auditory working memory performance, indicating that executing a saccade exclusively taxes the VWM system. Our results suggest that the visual system presaccadically stores the upcoming retinal image, which has a similar VWM load as committing one extra item to memory and interferes with stored VWM content. After the saccade, the visual system can retrieve this item from VWM to evaluate saccade accuracy. Our results support the idea that VWM is a system which is directly linked to saccade execution and promotes visual continuity across saccades.
The experience of our visual surroundings appears continuous, contradicting the erratic nature of visual processing due to saccades. A possible way the visual system can construct a continuous experience is by integrating presaccadic and postsaccadic visual input. However, saccades rarely land exactly at the intended location. Feature integration would therefore need to be robust against variations in saccade execution to facilitate visual continuity. In the current study, observers reported a feature (color) of the saccade target, which occasionally changed slightly during the saccade. In transsaccadic change-trials, observers reported a mixture of the pre- and postsaccadic color, indicating transsaccadic feature integration. Saccade landing distance was not a significant predictor of the reported color. Next, to investigate the influence of more extreme deviations of saccade landing point on color reports, we used a global effect paradigm in a second experiment. In global effect trials, a distractor appeared together with the saccade target, causing most saccades to land in between the saccade target and the distractor. Strikingly, even when saccades land further away (up to 4°) from the saccade target than one would expect under single target conditions, there was no effect of saccade landing point on the reported color. We reason that saccade landing point does not affect feature integration, due to dissociation between the intended saccade target and the actual saccade landing point. Transsaccadic feature integration seems to be a mechanism that is dependent on visual spatial attention, and, as a result, is robust against variance in saccade landing point.
In this experiment, we demonstrate modulation of the pupillary light response by spatial working memory (SWM). The pupillary light response has previously been shown to reflect the focus of covert attention, as demonstrated by smaller pupil sizes when a subject covertly attends a location on a bright background compared to a dark background. We took advantage of this modulation of the pupillary light response to measure the focus of attention during a SWM delay. Subjects performed two tasks in which a stimulus was presented in the periphery on either the bright or the dark half of a black and white display. Importantly, subjects had to remember the exact location of the stimulus in only one of the two tasks. We observed a modulation of pupil size by background luminance in the delay period, but only when subjects had to remember the exact location. We interpret this as evidence for a tight coupling between spatial attention and maintaining information in SWM. Interestingly, we observed particularly strong modulation of background luminance at the beginning and end of the delay, but not in between. This is suggestive of strategic guidance of spatial attention by the content of spatial working memory when it is task relevant.
ARTICLE HISTORY
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.