The kinetics of the bacterial bioluminescence reaction is altered in the presence of the fluorescent (antenna) proteins, lumazine protein (LumP) from Photobacterium or the yellow fluorescence proteins (YFP) having FMN or Rf bound, from Vibrio fischeri strain Y1. Depending on reaction conditions, the bioluminescence intensity and its decay rate may be either enhanced or strongly quenched in the presence of the fluorescent proteins. These effects can be simply explained on the basis of the same protein-protein complex model that accounts for the bioluminescence spectral shifts induced by these fluorescent proteins. In such a complex, where the fluorophore evidently is in proximity to the luciferase active site, it is expected that the on-off rate of certain aliphatic components of the reaction should be altered with a consequent shift in the equilibria among the luciferase intermediates, as recently elaborated in a kinetic scheme. These aliphatic components are the bioluminescence reaction substrate, tetradecanal or other long-chain aldehyde, its carboxylic acid product, or dodecanol used as a stabilizer of the luciferase peroxyflavin. No evidence can be found for the protein-protein interaction in the absence of the aliphatic component.
Stretch and release experiments carried out on skinned single fibers of frog skeletal muscle under rigor conditions indicate that the elastic properties of the fiber depend on strain. For modulation frequencies below 1000 Hz, the results show an increase in Young's modulus of 20% upon a stretch of 1 nm/half-sarcomere. Remarkably, the strain dependence of Young's modulus decreases at higher frequencies to about 10% upon a 1-nm/half-sarcomere stretch at a modulation frequency of 10 kHz. This suggests that the cause of the effect is less straightforward than originally believed: a simple slackening of the filaments would result in an equally large strain dependence at all frequencies, whereas strain-dependent properties of the actin filaments should show up most clearly at higher frequencies. We believe that the reduction of the strain dependence points to transitions of the cross-bridges between distinct force-producing states. This is consistent with the earlier observation that Young's modulus in rigor increases toward higher frequencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.