Since its introduction in December of 2019, SARS-CoV-2, the virus that causes COVID-19 disease, has rapidly spread across the world. Whilst vaccines are being rolled out, non-pharmaceutical interventions remain the most important tools for mitigating the spread of SARS-CoV-2. Quantifying the impact of these measures as well as determining what settings are prone to instigating (super)spreading events is important for informed and safe reopening of spaces and the targeting of interventions. Mathematical models can help decipher the complex interactions that underlie virus transmission. Currently, most mathematical models developed during the COVID-19 epidemic evaluate interventions at national or subnational levels. Smaller scales of transmission, such as at the level of indoor spaces, have received less attention, despite the central role they play in both transmission and control. Models that do act on this scale use simplified descriptions of human behavior, impeding a valid quantitative analysis of the impact of interventions on transmission in indoor spaces, particularly those that aim for physical distancing. To more accurately predict the transmission of SARS-CoV-2 through a pedestrian environment, we introduce a model that links pedestrian movement and choice dynamics with SARS-CoV-2 spreading models. The objective of this paper is to investigate the spread of SARS-CoV-2 in indoor spaces as it arises from human interactions and assess the relative impact of non-pharmaceutical interventions thereon. We developed a world-wide unique combined Pedestrian Dynamics - Virus Spread model (PeDViS model), which combines insights from pedestrian modelling, epidemiology, and IT-design. In particular, an expert-driven activity assignment model is coupled with the microscopic simulation model (Nomad) and a virus spread model (QVEmod). We first describe the non-linear relationships between the risks of exposure to the virus and the duration, distance, and context of human interactions. We compared virus exposure relative to a benchmark contact (1.5meters for 15 minutes): a threshold often used by public health agencies to determine at risk contacts. We discuss circumstances under which individuals that adhere to common distancing measures may nevertheless be at risk. Specifically, we illustrate the stark increase in exposure at shorter distances, as well as longer contact durations. These risks increase when the infected individual was present in the space before the interaction occurred, as a result of buildup of virus in the environment. The latter is particularly true in poorly ventilated spaces and highlights the importance of good ventilation to prevent potential virus exposure through indirect transmission routes. Combining intervention tools that target different routes of transmission can aid in accumulating impact. We use face masks as an example, which are particularly effective at reducing virus spread that is not affected by ventilation. We then demonstrate the use of PeDViS using a simple restaurant case study, focussing on transmission between guests. In this setting the exposure risk to individuals that are not seated at the same table is limited, but guests seated at nearby tables are estimated to experience exposure risks that surpass that of the benchmark contact. These risks are larger in low ventilation scenarios. Lastly, we illustrate that the impact of intervention measures on the number of new infections heavily depends on the relative efficiency of the direct and indirect transmission routes considered. This uncertainty should be considered when assessing the risks of transmission upon different types of human interactions in indoor spaces. The PeDViS case study shows the multi-dimensionality of SARS-CoV-2 that emerges from the interplay of human behaviour and the spread of respiratory viruses in indoor spaces. A modelling strategy that incorporates this in risk assessments can be an important tool to inform policy makers and citizens. It can empower them to make better design and policy decisions pertaining to the most effective use of measures to limit the spread of SARS-CoV-2 and safely open up indoor spaces.
Ideally, a multitude of steps has to be taken before a commercial implementation of a pedestrian model is used in practice. Calibration, the main goal of which is to increase the accuracy of the predictions by determining the set of values for the model parameters that allows for the best replication of reality, has an important role in this process. Yet, up to recently, calibration has received relatively little attention within the field of pedestrian modelling. Most studies focus only on one specific movement base case and/or use a single metric. It is questionable how generally applicable a pedestrian simulation model is that has been calibrated using a limited set of movement base cases and one metric. The objective of this research is twofold, namely, to (1) determine the effect of the choice of movement base cases, metrics, and density levels on the calibration results and (2) to develop a multiple-objective calibration approach to determine the aforementioned effects. In this paper a multiple-objective calibration scheme is presented for pedestrian simulation models, in which multiple normalized metrics (i.e., flow, spatial distribution, effort, and travel time) are combined by means of weighted sum method that accounts for the stochastic nature of the model. Based on the analysis of the calibration results, it can be concluded that (1) it is necessary to use multiple movement base cases when calibrating a model to capture all relevant behaviours, (2) the level of density influences the calibration results, and (3) the choice of metric or combinations of metrics influence the results severely.
Rotating ones body is a strategy pedestrians commonly use to avoid collisions. Even though this behaviour impact capacity heavily, this rotation behaviour is seldomly studied. This research aims to increase insight into rotation behaviour of pedestrians in high density bidirectional and crossing flows. Based on data from the CrowdLimits experiments, the effect of density, movement base case, flow ratio and disturbances on the rotation behaviour of pedestrians are studied. The main findings are that all these four factors impact the number of rotations in a flow. Yet, further research is necessary to better identify to what extend and when these factors impact the rotation behaviour most.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.