Red pulp macrophages of the spleen mediate turnover of billions of senescent erythrocytes per day. However, the molecular mechanisms involved in sequestration of senescent erythrocytes, their recognition and their subsequent degradation by red pulp macrophages remain unclear. In this study we provide evidence that the splenic environment is of substantial importance in facilitating erythrocyte turnover through induction of hemolysis. Upon isolating human spleen red pulp macrophages we noted a substantial lack of macrophages that were in the process of phagocytosing intact erythrocytes. Detailed characterization of erythrocyte and macrophage subpopulations from human spleen tissue led to the identification of erythrocytes that are devoid of hemoglobin, so-called erythrocyte ghosts. By in vivo imaging and transfusion experiments we further confirmed that senescent erythrocytes that are retained in the spleen are subject to hemolysis. Additionally, we show that erythrocyte adhesion molecules, which are specifically activated on aged erythrocytes, cause senescent erythrocytes to interact with extracellular matrix proteins that are exposed within the splenic architecture. Such adhesion molecule-driven retention of senescent erythrocytes, under low shear conditions, was found to result in steady shrinkage of the cell and ultimately resulted in hemolysis. In contrast to intact senescent erythrocytes, the remnant erythrocyte ghost shells were prone to recognition and breakdown by red pulp macrophages. These data identify hemolysis as a key event in the turnover of senescent erythrocytes, which alters our current understanding of how erythrocyte degradation is regulated.
Key Points• The Lu/BCAM adhesion molecule is gradually activated during erythrocyte aging due to loss of sialic acid on glycophorin-C.• Upon activation, Lu/ BCAM engages a sialic acid-dependent interaction with the extracellular matrix protein laminin-a5.Lutheran/basal cell adhesion molecule (Lu/BCAM) is a transmembrane adhesion molecule expressed by erythrocytes and endothelial cells that can interact with the extracellular matrix protein laminin-a5. In sickle cell disease, Lu/BCAM is thought to contribute to adhesion of sickle erythrocytes to the vascular wall, especially during vaso-occlusive crises.On healthy erythrocytes however, its function is unclear. Here we report that Lu/BCAM is activated during erythrocyte aging. We show that Lu/BCAM-mediated binding to laminin-a5 is restricted by interacting, in cis, with glycophorin-C-derived sialic acid residues. Following loss of sialic acid during erythrocyte aging, Lu/BCAM is released from glycophorin-C and allowed to interact with sialic acid residues on laminin-a5.
In a family with mild dominant spherocytosis, affected members showed partial band 3 deficiency. The index patient showed more severe clinical symptoms than his relatives, and his red blood cells displayed concomitant low pyruvate kinase activity. We investigated the contribution of partial PK deficiency to the phenotypic expression of mutant band 3 in this family. Pyruvate kinase deficiency and band 3 deficiency were characterized by DNA analysis. Results of red cell osmotic fragility testing, the results of cell deformability obtained by the Automated Rheoscope and Cell Analyzer and the results obtained by Osmotic Gradient Ektacytometry, which is a combination of these tests, were related to the red cell ATP content. Spherocytosis in this family was due to a novel heterozygous mutation in SLC4A1, the gene for band 3. Reduced PK activity of the index patient was attributed to a novel mutation in PKLR inherited from his mother, who was without clinical symptoms. Partial PK deficiency was associated with decreased red cell ATP content and markedly increased osmotic fragility. This suggests an aggravating effect of low ATP levels on the phenotypic expression of band 3 deficiency.Am. J. Hematol. 90:E35-E39,
Erythrocytes circulate for an average of 120 days before they are removed from the circulation. Various processes and factors have been identified that may contribute to degradation of senescent erythrocytes, but this complex process is still not completely understood. Accumulation of removal signals such as phosphatidylserine exposure, changes in CD47 expression and oxidation of proteins and lipids that render them susceptible to complement deposition, may contribute to recognition and degradation by red pulp macrophages (RPM) of the spleen. However, many questions remain on the exact mechanisms that determine the fate of aged erythrocytes. This is well exemplified in a mouse study in which physiologically aged erythrocytes were found to undergo phagocytosis by RPM in vivo but not in vitro. This finding suggested that the splenic architecture may play an important role in facilitating erythrocyte turnover. Loss of membrane deformability may lead to the initial trapping of aged or damaged erythrocytes in the spleen, an event that precedes their degradation by macrophages. Loss of deformability can explain why certain genetic diseases that affect erythrocyte membrane deformability, such as is the case in sickle cell disease and spherocytosis, result in trapping in the spleen, giving rise to anaemia. Next to loss of deformability, activation of adhesion molecules, such as Lu/BCAM and CD44, specifically on aged erythrocytes has been proposed to contribute to retention of erythrocytes within the spleen, leading to their turnover. In this study we provide evidence that the splenic environment is of key importance in facilitating erythrocyte turnover through induction of hemolysis. Upon isolating human spleen RPM we noted that only a small proportion of the macrophages were in the process of phagocytosing intact erythrocytes. Based on a range of variables, including the number of erythrocytes that are cleared daily, the number of RPM present in the spleen, the degradation rate of erythrocytes as well as differential contribution of spleen and liver to erythrocyte turnover, conservative estimates approximate that at least a 30-fold fewer erythrophagocytic events are observed in RPM than anticipated. Detailed characterization of erythrocyte and macrophage subpopulations from human spleen tissue led to the identification of a large population of erythrocytes that are devoid of hemoglobin, so-called erythrocyte ghosts. By in vivo imaging of the spleen and transfusion experiments we further confirmed that senescent erythrocytes that are retained in the spleen are subject to hemolysis, thereby forming erythrocyte ghosts. Of note, we found that the levels of haptoglobin and hemopexin, two plasma proteins that are involved in scavenging of haemoglobin and heme, respectively, correlate well with the rate of hemolysis that was observed in the spleen. Additionally, we show that the erythrocyte adhesion molecules which are specifically activated on aged erythrocytes, Lu/BCAM and CD44, cause senescent erythrocytes to interact with the extracellular matrix of the spleen. This adhesion molecule-driven retention of senescent erythrocytes, under low shear conditions, was found to result in steady shrinkage of the erythrocytes and ultimately resulted in hemolysis and ghost formation. In contrast to intact senescent erythrocytes, the remnant erythrocyte ghosts were found to be immediately recognized and rapidly degraded (1-3 hours) by RPM, thereby explaining the lack of phagocytosis of intact erythrocytes in the spleen. Together, these data identify hemolysis and ghost formation as key events in the turnover of senescent erythrocytes, which alters our current understanding of how erythrocyte degradation is regulated. Disclosures No relevant conflicts of interest to declare.
More than 20,000 blood samples of individuals living in The Netherlands and suspected of hemolytic anemia or diabetes were analyzed by high resolution cation exchange high performance liquid chromatography (HPLC). Besides common disease-related hemoglobins (Hbs), rare variants were also detected. The variant Hbs were retrospectively analyzed by capillary zone electrophoresis (CZE) and by isoelectric focusing (IEF). For unambiguous identification, the globin genes were sequenced. Most of the 80 Hb variants detected by initial screening on HPLC were also separated by capillary electrophoresis (CE), but a few variants were only detectable with one of these methods. Some variants were unstable, had thalassemic properties or increased oxygen affinity, and some interfered with Hb A2 measurement, detection of sickle cell Hb or Hb A1c quantification. Two of the six novel variants, Hb Enschede (HBA2: c.308G > A, p.Ser103Asn) and Hb Weesp (HBA1: c.301C > T, p.Leu101Phe), had no clinical consequences. In contrast, two others appeared clinically significant: Hb Ede (HBB: c.53A > T, p.Lys18Met) caused thalassemia and Hb Waterland (HBB: c.428C > T, pAla143Val) was related to mild polycytemia. Hb A2-Venlo (HBD: c.193G > A, p.Gly65Ser) and Hb A2-Rotterdam (HBD: c.38A > C, p.Asn13Thr) interfered with Hb A2 quantification. This survey shows that HPLC analysis followed by globin gene sequencing of rare variants is an effective method to reveal Hb variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.