Maintenance and deployment of the immune system are costly and are hence predicted to trade-off with other resource-demanding traits, such as reproduction. We subjected this longstanding idea to test using laboratory experimental evolution approach. In the present study, replicate populations of Drosophila melanogaster were subjected to three selection regimes-I (Infection with Pseudomonas entomophila), S (Sham-infection with MgSO4 ), and U (Unhandled Control). After 30 generations of selection flies from the I regime had evolved better survivorship upon infection with P. entomophila compared to flies from U and S regimes. However, contrary to expectations and previous reports, we did not find any evidence of trade-offs between immunity and other life history related traits, such as longevity, fecundity, egg hatchability, or development time. After 45 generations of selection, the selection was relaxed for a set of populations. Even after 15 generations, the postinfection survivorship of populations under relaxed selection regime did not decline. We speculate that either there is a negligible cost to the evolved immune response or that trade-offs occur on traits such as reproductive behavior or other immune mechanisms that we have not investigated in this study. Our research suggests that at least under certain conditions, life-history trade-offs might play little role in maintaining variation in immunity.
Promiscuity can drive the evolution of sexual conflict before and after mating occurs. Post mating, the male ejaculate can selfishly manipulate female physiology, leading to a chemical arms race between the sexes. Theory suggests that drift and sexually antagonistic coevolution can cause allopatric populations to evolve different chemical interactions between the sexes, thereby leading to postmating reproductive barriers and speciation. There is, however, little empirical evidence supporting this form of speciation. We tested this theory by creating an experimental evolutionary model of Drosophila melanogaster populations undergoing different levels of interlocus sexual conflict. We found that allopatric populations under elevated sexual conflict show assortative mating, indicating premating reproductive isolation. Further, these allopatric populations also show reduced copulation duration and sperm defense ability when mating happens between individuals across populations compared to that within the same population, indicating postmating prezygotic isolation. Sexual conflict can cause reproductive isolation in allopatric populations through the coevolution of chemical (postmating prezygotic) as well as behavioural (premating) interactions between the sexes. Thus, to our knowledge, we provide the first comprehensive evidence of postmating (as well as premating) reproductive isolation due to sexual conflict.
In many species, sperm can remain viable in the reproductive tract of a female well beyond the typical interval to remating. This creates an opportunity for sperm from different males to compete for oocyte fertilization inside the female’s reproductive tract. In Drosophila melanogaster, sperm characteristics and seminal fluid content affect male success in sperm competition. On the other hand, although genome-wide association studies (GWAS) have demonstrated that female genotype plays a role in sperm competition outcome as well, the biochemical, sensory, and physiological processes by which females detect and selectively use sperm from different males remain elusive. Here, we functionally tested 26 candidate genes implicated via a GWAS for their contribution to the female’s role in sperm competition, measured as changes in the relative success of the first male to mate (P1). Of these 26 candidates, we identified eight genes that affect P1 when knocked down in females, and showed that five of them do so when knocked down in the female nervous system. In particular, Rim knockdown in sensory pickpocket (ppk)+ neurons lowered P1, confirming previously published results, and a novel candidate, caup, lowered P1 when knocked down in octopaminergic Tdc2+ neurons. These results demonstrate that specific neurons in the female’s nervous system play a functional role in sperm competition and expand our understanding of the genetic, neuronal, and mechanistic basis of female responses to multiple matings. We propose that these neurons in females are used to sense, and integrate, signals from courtship or ejaculates, to modulate sperm competition outcome accordingly.
In many species, sperm can remain viable in the reproductive tract of a female well beyond the typical interval to remating. This creates an opportunity for sperm from different males to compete for oocyte fertilization inside the female's reproductive tract.In Drosophila melanogaster, sperm morphology and seminal fluid content affect male success in sperm competition. On the other hand, although genome-wide association studies (GWAS) have demonstrated that female genotype plays a role in sperm competition outcome as well, the biochemical, sensory and physiological processes by which females detect and selectively use sperm from different males remain elusive.Here, we functionally tested 27 candidate genes implicated via a GWAS for their contribution to the female's role in sperm competition, measured as changes in the relative success of the first male to mate (P1). Of these 27 candidates, we identified eight genes that affect P1 when knocked down in females, and also showed that six of them do so when knocked down in the female nervous system. Two genes in particular, Rim and caup, lowered P1 when knocked down in sensory pickpocket (ppk) + neurons and octopaminergic Tdc2 + neurons, respectively. These results establish a functional role for the female's nervous system in the process of sperm competition and expand our understanding of the genetic, neuronal and mechanistic basis of female responses to multiple matings. We propose that through their nervous system, females actively assess male compatibility based on courtship or ejaculates and modulate sperm competition outcome accordingly.
Promiscuity can drive the evolution of sexual conflict before and after mating occurs. Post mating, the male ejaculate can selfishly manipulate female physiology, leading to a chemical arms race between the sexes. Theory suggests that drift and sexually antagonistic coevolution can cause allopatric populations to evolve different chemical interactions between the sexes, thereby leading to postmating reproductive barriers and speciation. There is, however, little empirical evidence supporting this form of speciation. We tested this theory by creating an experimental evolutionary model of Drosophila melanogaster populations undergoing different levels of interlocus sexual conflict. We found that allopatric populations under elevated sexual conflict show assortative mating, indicating premating reproductive isolation. Further, these allopatric populations also show reduced copulation duration and sperm defense ability when mating happens between individuals across populations compared to that within the same population, indicating postmating prezygotic isolation. Sexual conflict can cause reproductive isolation in allopatric populations through the coevolution of chemical (postmating prezygotic) as well as behavioural (premating) interactions between the sexes. Thus, to our knowledge, we provide the first comprehensive evidence of postmating (as well as premating) reproductive isolation due to sexual conflict.In sexually reproducing species, males and females often have differential reproductive investment, and, consequently differential evolutionary interest in the outcome of sexual interactions 1, 2 . This often leads to a scenario where adaptations benefitting one sex come at the expense of the other [3][4][5] , bringing about a coevolutionary chase typically called sexually antagonistic coevolution (SAC) 6 . According to verbal 7, 8 and formal 9, 10 arguments, SAC can lead to a perpetual arms race between males and females of the same species. A byproduct of this is the continual divergence between allopatric populations in genes related to reproduction, leading to reproductive isolation (RI) even in the absence of natural selection. This hypothesis is supported indirectly by comparative studies that showed higher rates of speciation in insect clades where sexual conflict is observed than those where it is not observed 11 . However, no such evidence has been found in other studies on mammals, butterflies, spiders 12 and birds 13. An alternative to phylogenetic analysis that has been used to directly test the hypothesis is through experimental evolution which follows a simple experimental design: a. Evolving independent replicate (i.e., allopatric) populations maintained under high and low/no conflict regimes (e.g., by enforcing monogamy or altering sex ratio) while all else remains equal. b. Thereafter quantifying RI between allopatric populations within a regime and comparing the extent of isolation between different regimes.Following this hypothesis, upon secondary contact, allopatric populations will show ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.