This review describes recent advances in the handling and manipulation of magnetic particles in microfluidic systems. Starting from the properties of magnetic nanoparticles and microparticles, their use in magnetic separation, immuno-assays, magnetic resonance imaging, drug delivery, and hyperthermia is discussed. We then focus on new developments in magnetic manipulation, separation, transport, and detection of magnetic microparticles and nanoparticles in microfluidic systems, pointing out the advantages and prospects of these concepts for future analysis applications.
Merge, mix, split, and transport are the main manipulation steps used for on‐chip droplet‐based DNA purification (see figure). The system is able to extract genomic material from dilute raw cell samples by using the actuation of magnetic microparticles within the droplets through a matrix of coils.
Dielectric microspheres with appropriate refractive index can image objects with super-resolution, that is, with a precision well beyond the classical diffraction limit. A microsphere is also known to generate upon illumination a photonic nanojet, which is a scattered beam of light with a high-intensity main lobe and very narrow waist. Here, we report a systematic study of the imaging of water-immersed nanostructures by barium titanate glass microspheres of different size. A numerical study of the light propagation through a microsphere points out the light focusing capability of microspheres of different size and the waist of their photonic nanojet. The former correlates to the magnification factor of the virtual images obtained from linear test nanostructures, the biggest magnification being obtained with microspheres of ∼6-7 μm in size. Analyzing the light intensity distribution of microscopy images allows determining analytically the point spread function of the optical system and thereby quantifies its resolution. We find that the super-resolution imaging of a microsphere is dependent on the waist of its photonic nanojet, the best resolution being obtained with a 6 μm Ø microsphere, which generates the nanojet with the minimum waist. This comparison allows elucidating the super-resolution imaging mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.